You are given a sequence of numbers a1, a2, ..., an, and a number m.
Check if it is possible to choose a non-empty subsequence aij such that the sum of numbers in this subsequence is divisible by m.
The first line contains two numbers, n and m (1 ≤ n ≤ 106, 2 ≤ m ≤ 103) — the size of the original sequence and the number such that sum should be divisible by it.
The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).
In the single line print either "YES" (without the quotes) if there exists the sought subsequence, or "NO" (without the quotes), if such subsequence doesn't exist.
3 5
1 2 3
YES
1 6
5
NO
4 6
3 1 1 3
YES
6 6
5 5 5 5 5 5
YES
In the first sample test you can choose numbers 2 and 3, the sum of which is divisible by 5.
In the second sample test the single non-empty subsequence of numbers is a single number 5. Number 5 is not divisible by6, that is, the sought subsequence doesn't exist.
In the third sample test you need to choose two numbers 3 on the ends.
In the fourth sample test you can take the whole subsequence.
题意:
给出一个数列,和一个数m,问能不能从这个数列中选出若干个数,使得这些数的和可以整除m
整除m,也就是%m==0
其实是个很水的01背包,每个数取和不取
dp[i][j]表示选择到第i个数,和模m==j的情况有没有(有1,没有0)
但是我们会发现n很大,m很小
根据抽屉原理,当n>=m时,一定能
当n<m时,此时的数据大小<=1000,这个时候的dp,复杂度为n*m<m*m,可以过了
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxm=1e3+10; const int maxn=1e6+10; int dp[maxm][maxm]; int a[maxn]; int main() { int n,m; scanf("%d %d",&n,&m); for(int i=1;i<=n;++i){ scanf("%d",&a[i]); a[i]%=m; } if(n>=m){ printf("YES "); return 0; } memset(dp,0,sizeof dp); for(int i=1;i<=n;i++){ dp[i][a[i]]=1; for(int j=0;j<m;j++){ if(dp[i-1][j]){ dp[i][j]=true; dp[i][(j+a[i])%m]=true; } } } if(dp[n][0]>0) printf("YES "); else printf("NO "); return 0; }