• CF577B Modulo Sum 好题


    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given a sequence of numbers a1, a2, ..., an, and a number m.

    Check if it is possible to choose a non-empty subsequence aij such that the sum of numbers in this subsequence is divisible by m.

    Input

    The first line contains two numbers, n and m (1 ≤ n ≤ 106, 2 ≤ m ≤ 103) — the size of the original sequence and the number such that sum should be divisible by it.

    The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).

    Output

    In the single line print either "YES" (without the quotes) if there exists the sought subsequence, or "NO" (without the quotes), if such subsequence doesn't exist.

    Sample test(s)
    input
    3 5
    1 2 3
    output
    YES
    input
    1 6
    5
    output
    NO
    input
    4 6
    3 1 1 3
    output
    YES
    input
    6 6
    5 5 5 5 5 5
    output
    YES
    Note

    In the first sample test you can choose numbers 2 and 3, the sum of which is divisible by 5.

    In the second sample test the single non-empty subsequence of numbers is a single number 5. Number 5 is not divisible by6, that is, the sought subsequence doesn't exist.

    In the third sample test you need to choose two numbers 3 on the ends.

    In the fourth sample test you can take the whole subsequence.

    题意:

    给出一个数列,和一个数m,问能不能从这个数列中选出若干个数,使得这些数的和可以整除m

    整除m,也就是%m==0

    其实是个很水的01背包,每个数取和不取

    dp[i][j]表示选择到第i个数,和模m==j的情况有没有(有1,没有0)

    但是我们会发现n很大,m很小

    根据抽屉原理,当n>=m时,一定能

    当n<m时,此时的数据大小<=1000,这个时候的dp,复杂度为n*m<m*m,可以过了

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    const int maxm=1e3+10;
    const int maxn=1e6+10;
    
    int dp[maxm][maxm];
    int a[maxn];
    
    int main()
    {
        int n,m;
    
        scanf("%d %d",&n,&m);
        for(int i=1;i<=n;++i){
            scanf("%d",&a[i]);
            a[i]%=m;
        }
        if(n>=m){
            printf("YES
    ");
            return 0;
        }
    
        memset(dp,0,sizeof dp);
    
        for(int i=1;i<=n;i++){
            dp[i][a[i]]=1;
            for(int j=0;j<m;j++){
                if(dp[i-1][j]){
                    dp[i][j]=true;
                    dp[i][(j+a[i])%m]=true;
                }
            }
        }
    
        if(dp[n][0]>0)
            printf("YES
    ");
        else
            printf("NO
    ");
    
        return 0;
    }
  • 相关阅读:
    c# 利用反射设置属性值
    C#中扩展方法
    Python与Ruby比较
    Python 学习笔记(半ZZ半自己写)
    c# 写的一个类帮助器(动态生成类 动态类 动态属性)
    c#学习python
    LBS中从数据库查询某经纬度2KM范围内的数据 针对大数据量的性能优化
    隐藏ToString等系统自带方法
    C#命名规范
    SQL Server 数值四舍五入,小数点后保留2位
  • 原文地址:https://www.cnblogs.com/-maybe/p/4833989.html
Copyright © 2020-2023  润新知