这是CS190.1x第一次作业,主要教你如何使用numpy。numpy可以说是python科学计算的基础包了,用途非常广泛。相关ipynb文件见我github。
这次作业主要分成5个部分,分别是:数学复习,numpy介绍,numpy和线性代数,lambda表达式和CTR预览(lab4的内容,不明白有什么意义,略过)
Part 1 Math review
第一部分主要介绍了线性代数的知识,包括向量的加减乘除和矩阵的加减乘除,代码也不用贴了。
Part 2 NumPy
numpy是python用于向量计算的包,它对向量和矩阵计算提供了非常好的接口,而且对速度和内存的优化也做的非常好。本部分会详细的介绍numpy。
Scalar multiplication
向量与常数相乘
# It is convention to import NumPy with the alias np
import numpy as np
# TODO: Replace <FILL IN> with appropriate code
# Create a numpy array with the values 1, 2, 3
simpleArray = np.array([1,2,3])
# Perform the scalar product of 5 and the numpy array
timesFive = 5 * simpleArray
print simpleArray
print timesFive
Element-wise multiplication and dot product
numpy提供了元素相乘和点乘
# TODO: Replace <FILL IN> with appropriate code
# Create a ndarray based on a range and step size.
u = np.arange(0, 5, .5)
v = np.arange(5, 10, .5)
elementWise = u * v
dotProduct = np.dot(u,v)
print 'u: {0}'.format(u)
print 'v: {0}'.format(v)
print '
elementWise
{0}'.format(elementWise)
print '
dotProduct
{0}'.format(dotProduct)
Matrix math
numpy提供了矩阵的转置,点乘,求逆运算
# TODO: Replace <FILL IN> with appropriate code
from numpy.linalg import inv
A = np.matrix([[1,2,3,4],[5,6,7,8]])
print 'A:
{0}'.format(A)
# Print A transpose
print '
A transpose:
{0}'.format(A.T)
# Multiply A by A transpose
AAt = A.dot(np.matrix.transpose(A))
print '
AAt:
{0}'.format(AAt)
# Invert AAt with np.linalg.inv()
AAtInv = inv(AAt)
print '
AAtInv:
{0}'.format(AAtInv)
# Show inverse times matrix equals identity
# We round due to numerical precision
print '
AAtInv * AAt:
{0}'.format((AAtInv * AAt).round(4))
Part 3 Additional NumPy and Spark linear algebra
Slices
熟悉python的list的人对这个应该不陌生。
# TODO: Replace <FILL IN> with appropriate code
features = np.array([1, 2, 3, 4])
print 'features:
{0}'.format(features)
# The last three elements of features
lastThree = features[-3:]
print '
lastThree:
{0}'.format(lastThree)
Combining ndarray objects
这里介绍np.hstack():按照列来合并; np.vstack():按照行来合并。
# TODO: Replace <FILL IN> with appropriate code
zeros = np.zeros(8)
ones = np.ones(8)
print 'zeros:
{0}'.format(zeros)
print '
ones:
{0}'.format(ones)
zerosThenOnes = np.hstack((zeros,ones)) # A 1 by 16 array
zerosAboveOnes = np.vstack((zeros,ones)) # A 2 by 8 array
print '
zerosThenOnes:
{0}'.format(zerosThenOnes)
print '
zerosAboveOnes:
{0}'.format(zerosAboveOnes)
PySpark's DenseVector
PySpark提供了DenseVector(在pyspark.mllib.lianlg)来存储数组,这和numpy有点类似。
from pyspark.mllib.linalg import DenseVector
# TODO: Replace <FILL IN> with appropriate code
numpyVector = np.array([-3, -4, 5])
print '
numpyVector:
{0}'.format(numpyVector)
# Create a DenseVector consisting of the values [3.0, 4.0, 5.0]
myDenseVector = DenseVector([3.0, 4.0, 5.0])
# Calculate the dot product between the two vectors.
denseDotProduct = myDenseVector.dot(numpyVector)
print 'myDenseVector:
{0}'.format(myDenseVector)
print '
denseDotProduct:
{0}'.format(denseDotProduct)
Part 4 Python lambda expressions
lambda之前出现了这么多次,不明白为啥才讲。。。囧。讲lambda的博客也是特别多,大家有兴趣可以搜搜看。
# Example function
def addS(x):
return x + 's'
print type(addS)
print addS
print addS('cat')
# As a lambda
addSLambda = lambda x: x + 's'
print type(addSLambda)
print addSLambda
print addSLambda('cat')
# TODO: Replace <FILL IN> with appropriate code
# Recall that: "lambda x, y: x + y" creates a function that adds together two numbers
multiplyByTen = lambda x: x * 10
print multiplyByTen(5)
# Note that the function still shows its name as <lambda>
print '
', multiplyByTen
lambda fewer steps than def
这里给出了lamda比def要灵活的例子
# Code using def that we will recreate with lambdas
def plus(x, y):
return x + y
def minus(x, y):
return x - y
functions = [plus, minus]
print functions[0](4, 5)
print functions[1](4, 5)
# TODO: Replace <FILL IN> with appropriate code
# The first function should add two values, while the second function should subtract the second
# value from the first value.
lambdaFunctions = [lambda x,y : x+y , lambda x,y : x-y]
print lambdaFunctions[0](4, 5)
print lambdaFunctions[1](4, 5)
Lambda expression arguments
这一部分应该是说lambda的入参不一样,但是效果一样
# Examples. Note that the spacing has been modified to distinguish parameters from tuples.
# One-parameter function
a1 = lambda x: x[0] + x[1]
a2 = lambda (x0, x1): x0 + x1
print 'a1( (3,4) ) = {0}'.format( a1( (3,4) ) )
print 'a2( (3,4) ) = {0}'.format( a2( (3,4) ) )
# Two-parameter function
b1 = lambda x, y: (x[0] + y[0], x[1] + y[1])
b2 = lambda (x0, x1), (y0, y1): (x0 + y0, x1 + y1)
print '
b1( (1,2), (3,4) ) = {0}'.format( b1( (1,2), (3,4) ) )
print 'b2( (1,2), (3,4) ) = {0}'.format( b2( (1,2), (3,4) ) )
# TODO: Replace <FILL IN> with appropriate code
# Use both syntaxes to create a function that takes in a tuple of two values and swaps their order
# E.g. (1, 2) => (2, 1)
swap1 = lambda x: (x[1],x[0])
swap2 = lambda (x0, x1): (x1,x0)
print 'swap1((1, 2)) = {0}'.format(swap1((1, 2)))
print 'swap2((1, 2)) = {0}'.format(swap2((1, 2)))
# Using either syntax, create a function that takes in a tuple with three values and returns a tuple
# of (2nd value, 3rd value, 1st value). E.g. (1, 2, 3) => (2, 3, 1)
swapOrder = lambda x:(x[1],x[2],x[0])
print 'swapOrder((1, 2, 3)) = {0}'.format(swapOrder((1, 2, 3)))
# Using either syntax, create a function that takes in three tuples each with two values. The
# function should return a tuple with the values in the first position summed and the values in the
# second position summed. E.g. (1, 2), (3, 4), (5, 6) => (1 + 3 + 5, 2 + 4 + 6) => (9, 12)
sumThree = lambda x,y,z :(x[0]+y[0]+z[0],x[1]+y[1]+z[1])
print 'sumThree((1, 2), (3, 4), (5, 6)) = {0}'.format(sumThree((1, 2), (3, 4), (5, 6)))
Functional programming
# Create a class to give our examples the same syntax as PySpark
class FunctionalWrapper(object):
def __init__(self, data):
self.data = data
def map(self, function):
"""Call `map` on the items in `data` using the provided `function`"""
return FunctionalWrapper(map(function, self.data))
def reduce(self, function):
"""Call `reduce` on the items in `data` using the provided `function`"""
return reduce(function, self.data)
def filter(self, function):
"""Call `filter` on the items in `data` using the provided `function`"""
return FunctionalWrapper(filter(function, self.data))
def __eq__(self, other):
return (isinstance(other, self.__class__)
and self.__dict__ == other.__dict__)
def __getattr__(self, name): return getattr(self.data, name)
def __getitem__(self, k): return self.data.__getitem__(k)
def __repr__(self): return 'FunctionalWrapper({0})'.format(repr(self.data))
def __str__(self): return 'FunctionalWrapper({0})'.format(str(self.data))
# Map example
# Create some data
mapData = FunctionalWrapper(range(5))
# Define a function to be applied to each element
f = lambda x: x + 3
# Imperative programming: loop through and create a new object by applying f
mapResult = FunctionalWrapper([]) # Initialize the result
for element in mapData:
mapResult.append(f(element)) # Apply f and save the new value
print 'Result from for loop: {0}'.format(mapResult)
# Functional programming: use map rather than a for loop
print 'Result from map call: {0}'.format(mapData.map(f))
# Note that the results are the same but that the map function abstracts away the implementation
# and requires less code
# TODO: Replace <FILL IN> with appropriate code
dataset = FunctionalWrapper(range(10))
# Multiply each element by 5
mapResult = dataset.map(lambda x :x*5)
# Keep the even elements
# Note that "x % 2" evaluates to the remainder of x divided by 2
filterResult = dataset.filter(lambda x : x%2==0)
# Sum the elements
reduceResult = dataset.reduce(lambda x,y: x+y)
print 'mapResult: {0}'.format(mapResult)
print '
filterResult: {0}'.format(filterResult)
print '
reduceResult: {0}'.format(reduceResult)
Composability
# Example of a mult-line expression statement
# Note that placing parentheses around the expression allow it to exist on multiple lines without
# causing a syntax error.
(dataset
.map(lambda x: x + 2)
.reduce(lambda x, y: x * y))
# TODO: Replace <FILL IN> with appropriate code
# Multiply the elements in dataset by five, keep just the even values, and sum those values
finalSum = dataset.map(lambda x :x*5).filter(lambda x : x%2==0).reduce(lambda x,y: x+y)
print finalSum