题目链接:https://codeforces.com/contest/1312
题目大意:
想法:
首先我们要在m个数里面取n-1个数即 C(m,n-1)
然后取的这n-1个数里面最大的肯定是要在顶峰的位置,那么就要在n-2个数里面去找一个重复的数即 C(n-2,1)
已知顶峰和重复的两个数我们就可以确定一个形式 x y x 然后对于剩下的n-3个数我们直接考虑放在y左边 和 y右边 两种情况就可以了即 2^(n-3)
所以最后的答案 C(m,n-1)*C(n-2,1)*2^(n-3)
#pragma GCC optimize(3,"Ofast","inline")//O3优化 #pragma GCC optimize(2)//O2优化 #include <algorithm> #include <string> #include <string.h> #include <vector> #include <map> #include <stack> #include <set> #include <queue> #include <math.h> #include <cstdio> #include <iomanip> #include <time.h> #include <bitset> #include <cmath> #include <sstream> #include <iostream> #include <cstring> #define LL long long #define ls nod<<1 #define rs (nod<<1)+1 #define pii pair<int,int> #define mp make_pair #define pb push_back #define INF 0x3f3f3f3f #define max(a,b) (a>b?a:b) #define min(a,b) (a<b?a:b) const double eps = 1e-10; const int maxn = 2e5 + 10; const LL mod = 998244353; int sgn(double a){return a < -eps ? -1 : a < eps ? 0 : 1;} using namespace std; LL da[maxn];//G++ long long void init() { int i; da[0]=1; da[1]=1; for(i=2;i<maxn;i++) da[i]=i*da[i-1]%mod; } LL quickmod(LL a,LL b) { LL ans=1; while(b) { if(b&1) { ans=(ans*a)%mod; b--; } b/=2; a=((a%mod)*(a%mod))%mod; } return ans; } LL C(LL a, LL b) { return (da[a]%mod)*(quickmod(da[b]*da[a-b]%mod,mod-2))%mod; } int main() { init(); LL n,m; cin >> n >> m; if (n <= 2) { cout << 0 << endl; return 0; } cout << C(m,n-1)*C(n-2,1)%mod*quickmod(2,n-3)%mod << endl; return 0; }