• P3178 [HAOI2015]树上操作 (树链剖分模版题)


    题目链接:https://www.luogu.org/problem/P3178

    一定要用LL  !!!!!

      1 #include <stdio.h>
      2 #include <cstring>
      3 #include <iostream>
      4 #include <string>
      5 #include <algorithm>
      6 #include <queue>
      7 #include <vector>
      8 #include <math.h>
      9 #include <map>
     10 
     11 #define LL long long
     12 using namespace std;
     13 const int maxn = 2e5 + 10;
     14 
     15 struct Edge{
     16     LL to,next;
     17 }edge[maxn*2];
     18 
     19 LL head[maxn],tot;
     20 
     21 void add_edge(LL u,LL v){
     22     edge[++tot] = Edge{v,head[u]};
     23     head[u] = tot;
     24 }
     25 
     26 LL dep[maxn];
     27 LL fa[maxn];
     28 LL siz[maxn];
     29 LL son[maxn];
     30 
     31 void dfs1(LL u,LL f){
     32     dep[u] = dep[f] + 1;
     33     fa[u] = f;
     34     siz[u] = 1;
     35     LL maxsize = -1;
     36     for (LL i=head[u];~i;i=edge[i].next){
     37         LL v = edge[i].to;
     38         if (v == f)
     39             continue;
     40         dfs1(v,u);
     41         siz[u] += siz[v];
     42         if (siz[v] > maxsize){
     43             son[u] = v;
     44             maxsize = siz[v];
     45         }
     46     }
     47 }
     48 
     49 LL v[maxn];
     50 LL w[maxn];
     51 LL tim;
     52 LL dfn[maxn];
     53 LL top[maxn];
     54 
     55 void dfs2(LL u,LL t){
     56     dfn[u] = ++tim;
     57     top[u] = t;
     58     w[tim] = v[u];
     59     if (!son[u])
     60         return ;
     61     dfs2(son[u],t);
     62     for (LL i=head[u];~i;i=edge[i].next){
     63         LL v = edge[i].to;
     64         if (v == fa[u] || v == son[u])
     65             continue;
     66         dfs2(v,v);
     67     }
     68 }
     69 
     70 struct segment_tree{
     71     LL l,r;
     72     LL val;
     73     LL lazy;
     74 }tree[maxn*4];
     75 
     76 void pushup(LL nod){
     77     tree[nod].val = (tree[nod<<1].val + tree[(nod<<1)+1].val);
     78 }
     79 
     80 void pushdown(LL nod){
     81     tree[nod<<1].lazy += tree[nod].lazy;
     82     tree[(nod<<1)+1].lazy += tree[nod].lazy;
     83     tree[nod<<1].val += (tree[nod<<1].r-tree[nod<<1].l+1)*tree[nod].lazy;
     84     tree[(nod<<1)+1].val += (tree[(nod<<1)+1].r-tree[(nod<<1)+1].l+1)*tree[nod].lazy;
     85     tree[nod].lazy = 0;
     86 }
     87 
     88 void build(LL l,LL r,LL nod){
     89     tree[nod].l = l;
     90     tree[nod].r = r;
     91     if (l == r){
     92         tree[nod].val = w[l];
     93         tree[nod].lazy = 0;
     94         return ;
     95     }
     96     LL mid = (l + r) >> 1;
     97     build(l,mid,nod<<1);
     98     build(mid+1,r,(nod<<1)+1);
     99     pushup(nod);
    100 }
    101 
    102 void modify(LL x,LL y,LL z,LL k=1){
    103     LL l = tree[k].l,r = tree[k].r;
    104     if (x <= l && y >= r){
    105         tree[k].val += z * (r-l+1);
    106         tree[k].lazy += z;
    107         return ;
    108     }
    109     if (tree[k].lazy)
    110         pushdown(k);
    111     LL mid = (l + r) >> 1;
    112     if (x <= mid){
    113         modify(x,y,z,k<<1);
    114     }
    115     if (y > mid){
    116         modify(x,y,z,(k<<1)+1);
    117     }
    118     pushup(k);
    119 }
    120 
    121 LL query(LL x,LL y,LL k=1){
    122     LL l = tree[k].l,r = tree[k].r;
    123     if (x <= l && y >= r){
    124         return tree[k].val;
    125     }
    126     if (tree[k].lazy)
    127         pushdown(k);
    128     LL sum = 0;
    129     LL mid = (l + r) >> 1;
    130     if (x <= mid){
    131         sum += query(x,y,k<<1);
    132     }
    133     if (y > mid){
    134         sum += query(x,y,(k<<1)+1);
    135     }
    136     return sum;
    137 }
    138 
    139 void mson(LL x,LL z){
    140     modify(dfn[x],dfn[x]+siz[x]-1,z);
    141 }
    142 
    143 LL from_query(LL x,LL y){
    144     LL ret = 0;
    145     while (top[x] != top[y]){
    146         if (dep[top[x]] < dep[top[y]])
    147             swap(x,y);
    148         ret += query(dfn[top[x]],dfn[x]);
    149         x = fa[top[x]];
    150     }
    151     if (dep[x] > dep[y])
    152         swap(x,y);
    153     ret += query(dfn[x],dfn[y]);
    154     return ret;
    155 }
    156 
    157 int main(){
    158     LL n,m;
    159     scanf("%lld%lld",&n,&m);
    160     memset(head,-1, sizeof(head));
    161     for (LL i=1;i<=n;i++){
    162         scanf("%lld",&v[i]);
    163     }
    164     for (LL i=1;i<=n-1;i++){
    165         LL x,y;
    166         scanf("%lld%lld",&x,&y);
    167         add_edge(x,y);
    168         add_edge(y,x);
    169     }
    170     dfs1(1,0);
    171     dfs2(1,1);
    172     build(1,n,1);
    173     while (m--){
    174         int op;
    175         scanf("%d",&op);
    176         LL x;
    177         LL z;
    178         if (op == 1){
    179             scanf("%lld%lld",&x,&z);
    180             modify(dfn[x],dfn[x],z);
    181         }
    182         else if (op == 2){
    183             scanf("%lld%lld",&x,&z);
    184             mson(x,z);
    185         }
    186         else if (op == 3){
    187             scanf("%lld",&x);
    188             printf("%lld
    ",from_query(1,x));
    189         }
    190     }
    191     return 0;
    192 }
  • 相关阅读:
    面向对象第三单元博客作业
    面向对象编程第2次总结(电梯作业)
    面向对象编程第1次总结
    OOP 第四章博客总结
    OO 第三章总结
    OOP 第二章作业总结
    Java 设计模式 -- 代理模式
    ASID 与 MIPS 中 TLB 相关
    Java 锁机制总结
    OOP 第一章作业总结
  • 原文地址:https://www.cnblogs.com/-Ackerman/p/11459724.html
Copyright © 2020-2023  润新知