• codeforces#272 C. Dreamoon and Strings 字符串 dp


    codeforces#272 C. Dreamoon and Strings  字符串 dp

    Dreamoon has a string s and a pattern string p. He first removes exactly x characters from s obtaining string s' as a result. Then he calculates  that is defined as the maximal number of non-overlapping substrings equal to p that can be found in s'. He wants to make this number as big as possible.

    More formally, let's define  as maximum value of  over all s' that can be obtained by removing exactly x characters froms. Dreamoon wants to know  for all x from 0 to |s| where |s| denotes the length of string s.

    Input

    The first line of the input contains the string s (1 ≤ |s| ≤ 2 000).

    The second line of the input contains the string p (1 ≤ |p| ≤ 500).

    Both strings will only consist of lower case English letters.

    Output

    Print |s| + 1 space-separated integers in a single line representing the  for all x from 0 to |s|.

    Sample test(s)
    input
    aaaaa
    aa
    output
    2 2 1 1 0 0
    input
    axbaxxb
    ab
    output
    0 1 1 2 1 1 0 0
    Note

    For the first sample, the corresponding optimal values of s' after removal 0 through |s| = 5 characters from s are {"aaaaa", "aaaa","aaa", "aa", "a", ""}.

    For the second sample, possible corresponding optimal values of s' are {"axbaxxb", "abaxxb", "axbab", "abab", "aba", "ab","a", ""}.

    dp[i][j]为前i个字符删除j个时的匹配p的最大数目。

    dp[i][j]=max(dp[i-x-m][j-x]),m为p串长度,x为s从i开始向前匹配p需要删除的字符数。

    #include<bits/stdc++.h>
    #define REP(i,a,b) for(int i=a;i<=b;i++)
    #define MS0(a) memset(a,0,sizeof(a))
    
    using namespace std;
    
    const int maxn=1000100;
    const int INF=(1<<29);
    
    char s[maxn],t[maxn];
    int n,m;
    int dp[2200][2200];
    
    int del(int k)
    {
        int res=0;
        int i=k,j=m;
        while(i>=1&&j>=1){
            if(s[i]==t[j]) i--,j--;
            else i--,res++;
        }
        if(j==0) return res;
        return INF;
    }
    
    int main()
    {
        while(scanf("%s%s",s+1,t+1)!=EOF){
            n=strlen(s+1);m=strlen(t+1);
            MS0(dp);
            REP(i,0,n){
                REP(j,0,n){
                    if(i<j) dp[i][j]=-INF;
                }
            }
            for(int i=1;i<=n;i++){
                int x=del(i);
                for(int j=0;j<=i;j++){
                    dp[i][j]=max(dp[i-1][j],dp[i][j]);
                    if(j-x>=0) dp[i][j]=max(dp[i-x-m][j-x]+1,dp[i][j]);
                }
            }
            for(int i=0;i<=n;i++){
                if(i!=n) printf("%d ",dp[n][i]);
                else printf("%d
    ",dp[n][i]);
            }
        }
        return 0;
    }
    View Code
    没有AC不了的题,只有不努力的ACMER!
  • 相关阅读:
    网络
    oracle 操作
    oracle可重复执行脚本(添加字段)
    c#命名规范(转载)
    Oracle修改表结构字段名和字段长度
    C#Winform的DEV下拉下拉控件介绍
    TPL DataFlow初探(二)
    TPL DataFlow初探(一)
    C# Winform 跨线程更新UI控件常用方法汇总(多线程访问UI控件)
    C# 关于委托
  • 原文地址:https://www.cnblogs.com/--560/p/4754253.html
Copyright © 2020-2023  润新知