题面
题解
(g[i])表示长度为(i)的非降序列的个数
那么,
[ans = sum_{i=1}^{n}g[i]*(n-i)!-g[i+1]*(n-i-1)!*(i+1)
]
怎么求(g[i])呢
设(f[i][j])为长度为(i)的非降序列,以最后一个数是(j)的数量
(f[i][j] = sum f[i-1][k](k<=j))
这样是(O(n^3))
因为带修改,所以树状数组优化转移
复杂度:(O(n^2logn))
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 2010, Mod = 1e9 + 7;
int n, a[N], b[N], f[N][N], m;
void pls(int &x, int y) {
x += y;
if (x >= Mod) x -= Mod;
if (x < 0) x += Mod;
}
#define lowbit(x) (x & (-x))
void add(int id, int x, int k) { for (; x <= m; x += lowbit(x)) pls(f[id][x], k); }
int sum(int id, int x) { int res = 0; for (; x; x -= lowbit(x)) pls(res, f[id][x]); return res; }
int g[N], fac[N];
int main() {
read(n);
for (int i = 1; i <= n; i++) read(a[i]), b[i] = a[i];
sort(b + 1, b + 1 + n);
m = unique(b + 1, b + 1 + n) - b - 1;
for (int i = 1; i <= n; i++) a[i] = lower_bound(b + 1, b + 1 + m, a[i]) - b;
add(0, 1, 1);
for (int i = 1; i <= n; i++)
for (int j = i; j >= 1; j--) {
int tmp = sum(j - 1, a[i]);
pls(g[j], tmp);
add(j, a[i], tmp);
}
int ans = 0;
fac[0] = 1;
for (int i = 1; i <= n; i++) fac[i] = 1ll * fac[i - 1] * i % Mod;
for (int i = 1; i <= n; i++) pls(ans, (1ll * fac[n - i] * g[i] % Mod - 1ll * fac[n - i - 1] * g[i + 1] % Mod * (i + 1) % Mod + Mod) % Mod);
printf("%d
", ans);
return 0;
}