A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
通过观察可以注意到,对完全二叉树当中的任何一个结点(设编号为x),其左孩子的编号一定是2x,而右孩子的编号一定是2x + 1。也就是说,完全二叉树可以通过建立一个大小为2k的数组来存放所有结点的信息,其中k为完全二叉树的最大高度,且1号位存放的必须是根结点(想一想为什么根结点不能存在下标为0处?)。这样就可以用数组的下标来表图95完全二又树编号示意示结点编号,且左孩子和右孩子的编号都可以直接计算得到。
事实上,如果不是完全二叉树,也可以视其为完全二叉树,即把空结点也进行实际的编号工作。但是这样做会使整棵树是一条链时的空间消耗巨大(对k个结点就需要大小为2k的数组),因此很少采用这种方法来存放一般性质的树。不过如果题目中已经规定是完全二叉树,那么数组大小只需要设为结点上限个数加1即可,这将会大大节省编码复杂度。
除此之外,该数组中元素存放的顺序恰好为该完全二叉树的层序遍历序列。而判断某个结点是否为叶结点的标志为:该结点(记下标为root)的左子结点的编号root * 2大于结点总个数n(想一想为什么不需要判断右子结点?);判断某个结点是否为空结点的标志为:该结点下标 root大于结点总个数n。
1 #include <iostream> 2 #include <vector> 3 #include <algorithm> 4 using namespace std; 5 int N, nums[1001], res[1001], index = 0; 6 void levelOrder(int k) 7 { 8 if (k > N)//叶子节点 9 return; 10 levelOrder(k * 2);//遍历左子树 11 res[k] = nums[index++];//即遍历完左子树后,此时即为根节点 12 levelOrder(k * 2 + 1);//遍历右子树 13 } 14 int main() 15 { 16 cin >> N; 17 for (int i = 0; i < N; ++i) 18 cin >> nums[i]; 19 sort(nums, nums + N, [](int a, int b) {return a < b; }); 20 levelOrder(1); 21 for (int i = 1; i <= N; ++i) 22 cout << res[i] << (i == N ? "" : " "); 23 return 0; 24 }