• PAT甲级——A1064 Complete Binary Search Tree


    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

    • The left subtree of a node contains only nodes with keys less than the node's key.
    • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
    • Both the left and right subtrees must also be binary search trees.

    A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

    Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

    Output Specification:

    For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

    Sample Input:

    10
    1 2 3 4 5 6 7 8 9 0
    

    Sample Output:

    6 3 8 1 5 7 9 0 2 4

    通过观察可以注意到,对完全二叉树当中的任何一个结点(设编号为x),其左孩子的编号一定是2x,而右孩子的编号一定是2x + 1。也就是说,完全二叉树可以通过建立一个大小为2k的数组来存放所有结点的信息,其中k为完全二叉树的最大高度,且1号位存放的必须是根结点(想一想为什么根结点不能存在下标为0处?)。这样就可以用数组的下标来表图95完全二又树编号示意示结点编号,且左孩子和右孩子的编号都可以直接计算得到。
    事实上,如果不是完全二叉树,也可以视其为完全二叉树,即把空结点也进行实际的编号工作。但是这样做会使整棵树是一条链时的空间消耗巨大(对k个结点就需要大小为2k的数组),因此很少采用这种方法来存放一般性质的树。不过如果题目中已经规定是完全二叉树,那么数组大小只需要设为结点上限个数加1即可,这将会大大节省编码复杂度。
    除此之外,该数组中元素存放的顺序恰好为该完全二叉树的层序遍历序列。而判断某个结点是否为叶结点的标志为:该结点(记下标为root)的左子结点的编号root * 2大于结点总个数n(想一想为什么不需要判断右子结点?);判断某个结点是否为空结点的标志为:该结点下标 root大于结点总个数n。

     1 #include <iostream>
     2 #include <vector>
     3 #include <algorithm>
     4 using namespace std;
     5 int N, nums[1001], res[1001], index = 0;
     6 void levelOrder(int k)
     7 {
     8     if (k > N)//叶子节点
     9         return;
    10     levelOrder(k * 2);//遍历左子树
    11     res[k] = nums[index++];//即遍历完左子树后,此时即为根节点
    12     levelOrder(k * 2 + 1);//遍历右子树
    13 }
    14 int main()
    15 {
    16     cin >> N;
    17     for (int i = 0; i < N; ++i)
    18         cin >> nums[i];
    19     sort(nums, nums + N, [](int a, int b) {return a < b; });
    20     levelOrder(1);
    21     for (int i = 1; i <= N; ++i)
    22         cout << res[i] << (i == N ? "" : " ");
    23     return 0;
    24 }
  • 相关阅读:
    对于对象的要求:高内聚、低耦合,这样容易拼装成为一个系统
    为什么要使用面向对象
    什么是对象:EVERYTHING IS OBJECT(万物皆对象)
    文件 I/O 问题
    如果可能的话,使用 PC-Lint、LogiScope 等工具进行代码审查
    把编译器的选择项设置为最严格状态
    尽量不要使用与具体硬件或软件环境关系密切的变量
    尽量使用标准库函数
    如果原有的代码质量比较好,尽量复用它
    不要设计面面俱到、非常灵活的数据结构
  • 原文地址:https://www.cnblogs.com/zzw1024/p/11295343.html
Copyright © 2020-2023  润新知