• Mod Tree(hdu2815)


    Mod Tree

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5934    Accepted Submission(s): 1498


    Problem Description

      The picture indicates a tree, every node has 2 children.
      The depth of the nodes whose color is blue is 3; the depth of the node whose color is pink is 0.
      Now out problem is so easy, give you a tree that every nodes have K children, you are expected to calculate the minimize depth D so that the number of nodes whose depth is D equals to N after mod P.
     
    Input
    The input consists of several test cases.
    Every cases have only three integers indicating K, P, N. (1<=K, P, N<=10^9)
     
    Output
    The minimize D.
    If you can’t find such D, just output “Orz,I can’t find D!”
     
    Sample Input
    3 78992 453
    4 1314520 65536
    5 1234 67
     Sample Output
    Orz,I can’t find D!
    8
    20
    扩展baby_step,giant_step算法模板题
      1 #include<stdio.h>
      2 #include<algorithm>
      3 #include<queue>
      4 #include<stack>
      5 #include<string.h>
      6 #include<iostream>
      7 #include<math.h>
      8 #include<map>
      9 using namespace std;
     10 typedef long long LL;
     11 typedef struct node
     12 {
     13     LL val;
     14     int id;
     15 } ss;
     16 LL quick(LL n,LL m,LL mod);
     17 pair<LL,LL>ex_gcd(LL n,LL m);
     18 LL gcd(LL n,LL m);
     19 bool cmp(node p,node q);
     20 LL g_step_b_step(LL x,LL k,LL z);
     21 ss ans[100000];
     22 int main(void)
     23 {
     24     LL x,z,k;
     25     while(scanf("%lld %lld %lld",&x,&z,&k)!=EOF)
     26     {       
     27             LL ask = g_step_b_step(x,k,z);
     28             if(ask == -1||k >= z)
     29                 printf("Orz,I can’t find D!
    ");
     30             else printf("%lld
    ",ask);
     31     }
     32     return 0;
     33 }
     34 LL g_step_b_step(LL x,LL k,LL z)
     35 {
     36     LL y = 0;
     37     LL xx = 1;
     38     while(true)
     39     {
     40         LL c = xx%z;
     41         if(c == k)return y;
     42         LL gc = gcd(x,z);
     43         if(gc == 1)break;
     44         y++;if(k%gc)return -1;
     45         z/=gc;k /= gc;
     46         xx = xx*(x/gc);
     47         xx%=z;
     48     }
     49     LL zz = sqrt(z) + 1;
     50     pair<LL,LL>NI = ex_gcd(x,z);
     51     NI.first = (NI.first%z + z)%z;
     52     LL NNI = NI.first*(k%z)%z;
     53     ans[0].id = 0,ans[0].val = k;
     54     for(int i = 1; i <= zz; i++)
     55     {
     56         ans[i].id = i;
     57         ans[i].val = NNI;
     58         NNI = NNI*NI.first%z;
     59     }
     60     sort(ans,ans+zz+1,cmp);
     61     LL x1 = quick(x,zz,z);
     62     LL slx = xx;
     63     for(int i = 0; i <= zz; i++)
     64     {
     65         int l = 0,r = zz;
     66         int id = -1;
     67         while(l <= r)
     68         {
     69             int mid = (l+r)/2;
     70             if(ans[mid].val >= slx)
     71             {
     72                 id = mid;
     73                 r = mid - 1;
     74             }
     75             else l = mid + 1;
     76         }
     77         if(id!=-1)
     78         {
     79             if(ans[id].val == slx)
     80             {
     81                 LL ask = (LL)i*zz + ans[id].id + y;
     82                 return ask;
     83             }
     84         }
     85         slx = slx*x1%z;
     86     }
     87     return -1;
     88 }
     89 LL gcd(LL n,LL m)
     90 {
     91     if(m == 0)
     92         return n;
     93     else return gcd(m,n%m);
     94 }
     95 LL quick(LL n,LL m,LL mod)
     96 {
     97     n%=mod;
     98     LL ask = 1;
     99     while(m)
    100     {
    101         if(m&1)
    102             ask = ask*n%mod;
    103         n = n*n%mod;
    104         m/=2;
    105     }
    106     return ask;
    107 }
    108 pair<LL,LL>ex_gcd(LL n,LL m)
    109 {
    110     if(m == 0)
    111         return make_pair(1,0);
    112     else
    113     {
    114         pair<LL,LL>ans = ex_gcd(m,n%m);
    115         return make_pair(ans.second,ans.first - (n/m)*ans.second);
    116     }
    117 }
    118 bool cmp(node p,node q)
    119 {
    120     if(p.val == q.val)
    121         return p.id < q.id;
    122     else return p.val < q.val;
    123 }
    View Code
    油!油!you@
  • 相关阅读:
    Caused by: Unable to load bean: type: class:com.opensymphony.xwork2.ObjectFactory
    nable to load bean: type:com.opensymphony.xwork2.util.ValueStackFactory
    一个web项目web.xml的配置中<context-param>配置作用
    js获取form的方法
    HTML <legend> 标签
    Struts2 文件上传 之 文件类型 allowedTypes
    Struts2验证框架的配置及validation.xml常用的验证规则
    struts2学习笔记--使用Validator校验数据
    LeetCode204:Count Primes
    《采访中收集程序猿》学习记录5
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5763741.html
Copyright © 2020-2023  润新知