• MNIST机器学习入门【学习笔记】


    平台信息:
    PC:ubuntu18.04、i5、anaconda2、cuda9.0、cudnn7.0.5、tensorflow1.10、GTX1060

    作者:庄泽彬(欢迎转载,请注明作者)

    说明:本文是在tensorflow社区的学习笔记,MNIST 手写数据入门demo

    一、MNIST数据的下载,使用代码的方式:

    input_data.py文件内容:

    # Copyright 2015 Google Inc. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    """Functions for downloading and reading MNIST data."""
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    import gzip
    import os
    import numpy
    from six.moves import urllib
    from six.moves import xrange  # pylint: disable=redefined-builtin
    SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
    def maybe_download(filename, work_directory):
      """Download the data from Yann's website, unless it's already here."""
      if not os.path.exists(work_directory):
        os.mkdir(work_directory)
      filepath = os.path.join(work_directory, filename)
      if not os.path.exists(filepath):
        filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
        statinfo = os.stat(filepath)
        print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
      return filepath
    def _read32(bytestream):
      dt = numpy.dtype(numpy.uint32).newbyteorder('>')
      return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
    def extract_images(filename):
      """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
      print('Extracting', filename)
      with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
          raise ValueError(
              'Invalid magic number %d in MNIST image file: %s' %
              (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        return data
    def dense_to_one_hot(labels_dense, num_classes=10):
      """Convert class labels from scalars to one-hot vectors."""
      num_labels = labels_dense.shape[0]
      index_offset = numpy.arange(num_labels) * num_classes
      labels_one_hot = numpy.zeros((num_labels, num_classes))
      labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
      return labels_one_hot
    def extract_labels(filename, one_hot=False):
      """Extract the labels into a 1D uint8 numpy array [index]."""
      print('Extracting', filename)
      with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2049:
          raise ValueError(
              'Invalid magic number %d in MNIST label file: %s' %
              (magic, filename))
        num_items = _read32(bytestream)
        buf = bytestream.read(num_items)
        labels = numpy.frombuffer(buf, dtype=numpy.uint8)
        if one_hot:
          return dense_to_one_hot(labels)
        return labels
    class DataSet(object):
      def __init__(self, images, labels, fake_data=False):
        if fake_data:
          self._num_examples = 10000
        else:
          assert images.shape[0] == labels.shape[0], (
              "images.shape: %s labels.shape: %s" % (images.shape,
                                                     labels.shape))
          self._num_examples = images.shape[0]
          # Convert shape from [num examples, rows, columns, depth]
          # to [num examples, rows*columns] (assuming depth == 1)
          assert images.shape[3] == 1
          images = images.reshape(images.shape[0],
                                  images.shape[1] * images.shape[2])
          # Convert from [0, 255] -> [0.0, 1.0].
          images = images.astype(numpy.float32)
          images = numpy.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
      @property
      def images(self):
        return self._images
      @property
      def labels(self):
        return self._labels
      @property
      def num_examples(self):
        return self._num_examples
      @property
      def epochs_completed(self):
        return self._epochs_completed
      def next_batch(self, batch_size, fake_data=False):
        """Return the next `batch_size` examples from this data set."""
        if fake_data:
          fake_image = [1.0 for _ in xrange(784)]
          fake_label = 0
          return [fake_image for _ in xrange(batch_size)], [
              fake_label for _ in xrange(batch_size)]
        start = self._index_in_epoch
        self._index_in_epoch += batch_size
        if self._index_in_epoch > self._num_examples:
          # Finished epoch
          self._epochs_completed += 1
          # Shuffle the data
          perm = numpy.arange(self._num_examples)
          numpy.random.shuffle(perm)
          self._images = self._images[perm]
          self._labels = self._labels[perm]
          # Start next epoch
          start = 0
          self._index_in_epoch = batch_size
          assert batch_size <= self._num_examples
        end = self._index_in_epoch
        return self._images[start:end], self._labels[start:end]
    def read_data_sets(train_dir, fake_data=False, one_hot=False):
      class DataSets(object):
        pass
      data_sets = DataSets()
      if fake_data:
        data_sets.train = DataSet([], [], fake_data=True)
        data_sets.validation = DataSet([], [], fake_data=True)
        data_sets.test = DataSet([], [], fake_data=True)
        return data_sets
      TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
      TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
      TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
      TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
      VALIDATION_SIZE = 5000
      local_file = maybe_download(TRAIN_IMAGES, train_dir)
      train_images = extract_images(local_file)
      local_file = maybe_download(TRAIN_LABELS, train_dir)
      train_labels = extract_labels(local_file, one_hot=one_hot)
      local_file = maybe_download(TEST_IMAGES, train_dir)
      test_images = extract_images(local_file)
      local_file = maybe_download(TEST_LABELS, train_dir)
      test_labels = extract_labels(local_file, one_hot=one_hot)
      validation_images = train_images[:VALIDATION_SIZE]
      validation_labels = train_labels[:VALIDATION_SIZE]
      train_images = train_images[VALIDATION_SIZE:]
      train_labels = train_labels[VALIDATION_SIZE:]
      data_sets.train = DataSet(train_images, train_labels)
      data_sets.validation = DataSet(validation_images, validation_labels)
      data_sets.test = DataSet(test_images, test_labels)
      return data_sets

    新建test.py调用input_data.py进行下载手写识别的数据

    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
    """
    Created on Thu Oct 11 23:10:15 2018
    
    @author: zhuang
    """
    
    import input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

    注意test.py与input_data.py要放在同一个目录下,运行test.py之后会在当前目录生成MNIST_data/  存放下载的数据,下载的内容如下图

    二、使用tensorflow构建模型进行训练

    新建mnist-test.py内容如下:

    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
    """
    Created on Fri Oct 12 11:43:37 2018
    
    @author: zhuang
    """
    import input_data
    import tensorflow as tf
    
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    x = tf.placeholder("float",[None,784])
    
    w = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    
    y = tf.nn.softmax(tf.matmul(x,w)+b)
    
    # 计算交叉熵
    y_ = tf.placeholder("float",[None,10])
    cross_entropy = -tf.reduce_sum(y_*tf.log(y))
    
    #梯度下降算法,以0.01的学习率更新参数
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
    init = tf.initialize_all_variables()
    
    sess = tf.Session()
    sess.run(init)
    
    #训练模型1000次
    for i in range(1000):
        batch_xs,batch_ys = mnist.train.next_batch(100)
        sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})
    
    #评估模型
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
    
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    
    print sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})
    
        
        

    我们构建的模型手写识别的准确率在91%z左右

  • 相关阅读:
    文件比较运算符
    中山慧海人才市场9月份 现场招聘会预告
    80后智能科技公司诚聘业务人员
    元豪路灯厂诚聘
    对Discuz的简单认识
    discuz阅读权限的设置作用
    个人对织梦系统的认识
    awvs的用法
    cain使用方法
    CCNA笔记(1)
  • 原文地址:https://www.cnblogs.com/zzb-Dream-90Time/p/9777501.html
Copyright © 2020-2023  润新知