题目描述
您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:
- 插入xxx数
- 删除xxx数(若有多个相同的数,因只删除一个)
- 查询xxx数的排名(排名定义为比当前数小的数的个数+1+1+1。若有多个相同的数,因输出最小的排名)
- 查询排名为xxx的数
- 求xxx的前驱(前驱定义为小于xxx,且最大的数)
- 求xxx的后继(后继定义为大于xxx,且最小的数)
输入输出格式
输入格式:第一行为nnn,表示操作的个数,下面nnn行每行有两个数optoptopt和xxx,optoptopt表示操作的序号( 1≤opt≤6 1 leq opt leq 6 1≤opt≤6 )
输出格式:对于操作3,4,5,63,4,5,63,4,5,6每行输出一个数,表示对应答案
输入输出样例
输入样例#1:
复制
10 1 106465 4 1 1 317721 1 460929 1 644985 1 84185 1 89851 6 81968 1 492737 5 493598
输出样例#1: 复制
106465 84185 492737
说明
时空限制:1000ms,128M
1.n的数据范围: n≤100000 n leq 100000 n≤100000
2.每个数的数据范围: [−107,107][-{10}^7, {10}^7][−107,107]
来源:Tyvj1728 原名:普通平衡树
在此鸣谢
Splay Tree 即可;而且好写;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 400005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int rt, n, tot = 0; struct node { int ch[2]; int ff; int cnt; int val; int son; }e[maxn<<1]; void pushup(int u) { e[u].son = e[e[u].ch[0]].son + e[e[u].ch[1]].son + e[u].cnt; } void rotate(int x) { int y = e[x].ff; int z = e[y].ff; int k = (e[y].ch[1] == x); e[z].ch[e[z].ch[1] == y] = x; e[x].ff = z; e[y].ch[k] = e[x].ch[k ^ 1]; e[e[x].ch[k ^ 1]].ff = y; e[x].ch[k ^ 1] = y; e[y].ff = x; pushup(y); pushup(x); } void splay(int x, int aim) { while (e[x].ff != aim) { int y = e[x].ff; int z = e[y].ff; if (z != aim) { (e[y].ch[0] == x) ^ (e[z].ch[0] == y) ? rotate(x) : rotate(y); } rotate(x); } if (aim == 0)rt = x; } void ins(int x) { int u = rt, ff = 0; while (u&&e[u].val != x) { ff = u; u = e[u].ch[x > e[u].val]; } if (u)e[u].cnt++;// 已经存在 else { u = ++tot;// 总的节点数目 if (ff)e[ff].ch[x > e[ff].val] = u; e[tot].ch[0] = 0; e[tot].ch[1] = 0; e[tot].ff = ff; e[tot].val = x; e[tot].cnt = 1; e[tot].son = 1; } splay(u, 0); } void Find(int x) { // 查找x的位置 int u = rt; if (u == 0)return; while (e[u].ch[x > e[u].val] && x != e[u].val) { u = e[u].ch[x > e[u].val]; } splay(u, 0); } int nxt(int x, int f) { Find(x); int u = rt; if ((e[u].val > x&&f) || (e[u].val < x && !f))return u; u = e[u].ch[f]; while (e[u].ch[f ^ 1])u = e[u].ch[f ^ 1]; return u; } void del(int x) { int last = nxt(x, 0); int Next = nxt(x, 1); splay(last, 0); splay(Next, last); int delt = e[Next].ch[0]; if (e[delt].cnt > 1) { e[delt].cnt--; splay(delt, 0); } else e[Next].ch[0] = 0; } int k_th(int x) { // rank==x int u = rt; if (e[u].son < x)return false; while (1) { int y = e[u].ch[0]; if (x > e[y].son + e[u].cnt) { x -= e[y].son + e[u].cnt; u = e[u].ch[1]; } else if (e[y].son >= x)u = y; else return e[u].val; } } int main() { //ios::sync_with_stdio(0); ins(inf); ins(-inf); rdint(n); for (int i = 0; i < n; i++) { int op; rdint(op); int x; if (op == 1) { rdint(x); ins(x); } if (op == 2) { rdint(x); del(x); } if (op == 3) { rdint(x); Find(x); cout << e[e[rt].ch[0]].son << endl; } if (op == 4) { rdint(x); cout << k_th(x+1) << endl; } if (op == 5) { rdint(x); cout << e[nxt(x, 0)].val << endl; } if (op == 6) { rdint(x); cout << e[nxt(x, 1)].val << endl; } } return 0; }