题目描述
一年一度的欧洲足球冠军联赛已经进入了淘汰赛阶段。随着卫冕冠军巴萨罗那的淘汰,英超劲旅切尔西成为了头号热门。
新浪体育最近在吉林教育学院进行了一次大规模的调查,调查的内容就是关于切尔西能否在今年问鼎欧洲冠军。新浪体育的记者从各个院系中一共抽取了n位同学作为参与者,大家齐聚一堂,各抒己见。每一位参与者都将发言,阐述自己的看法。
参与者的心里都有一个看法,比如FireDancer认为切尔西不可能夺冠,而WaterDancer认为切尔西一定问鼎。但是因为WaterDancer是FireDancer的好朋友,所以可能FireDancer为了迁就自己的好朋友,会在发言中支持切尔西。也就是说每个参与者发言时阐述的看法不一定就是心里所想的。
现在告诉你大家心里的想法和参与者的朋友网,希望你能安排每个人的发言内容,使得违心说话的人的总数与发言时立场不同的朋友(对)的总数的和最小。
输入输出格式
输入格式:第一行两个整数nnn和mmm,其中nnn(2≤n≤3002≤n≤3002≤n≤300)表示参与者的总数,mmm($0≤m≤frac{1}{2} {n(n-1)$)表示朋友的总对数。
第二行nnn个整数,要么是000要么是111。如果第iii个整数的值是000的话,表示第iii个人心里认为切尔西将与冠军无缘,如果是111的话,表示他心里认为切尔西必将夺魁。
下面mmm行每行两个不同的整数,iii和jjj(1≤i,j≤n1≤i, j≤n1≤i,j≤n)表示i和j是朋友。注意没有一对朋友会在输入中重复出现。朋友关系是双向的,并且不会传递。
输出格式:只有一个整数,为最小的和。
输入输出样例
说明
最好的安排是所有人都在发言时说切尔西不会夺冠。这样没有一对朋友的立场相左,只有第1个人他违心说了话。
吐槽一句:和bzoj 1934一模一样。。。。
考虑建图:
我们将两种意见分为st,ed;
同意的和st相连,不同意的和ed相连;
如果由两个人是好朋友,那么连边(双向边);
原因:
我们求的最小割意思就是使这两个集合不联通,但是矛盾必须最小(最小割);
那么显然最大流=最小割;直接跑一遍dinic即可;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 300005 #define inf 0x3f3f3f3f #define INF 9999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } int n, m; int st, ed; struct node { int u, v, nxt, w; }edge[maxn<<2]; int head[maxn], cnt; void addedge(int u, int v, int w) { edge[cnt].u = u; edge[cnt].v = v; edge[cnt].w = w; edge[cnt].nxt = head[u]; head[u] = cnt++; } int rk[maxn]; int bfs() { queue<int>q; ms(rk); rk[st] = 1; q.push(st); while (!q.empty()) { int tmp = q.front(); q.pop(); for (int i = head[tmp]; i != -1; i = edge[i].nxt) { int to = edge[i].v; if (rk[to] || edge[i].w <= 0)continue; rk[to] = rk[tmp] + 1; q.push(to); } } return rk[ed]; } int dfs(int u, int flow) { if (u == ed)return flow; int add = 0; for (int i = head[u]; i != -1; i = edge[i].nxt) { int v = edge[i].v; if (rk[v] != rk[u] + 1 || !edge[i].w)continue; int tmpadd = dfs(v, min(edge[i].w, flow - add)); if (!tmpadd) { rk[v] = -1; continue; } edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd; add += tmpadd; } return add; } int ans; void dinic() { while (bfs())ans += dfs(st, inf); } int main() { //ios::sync_with_stdio(0); memset(head, -1, sizeof(head)); rdint(n); rdint(m); st = n + 1; ed = st + 1; for (int i = 1; i <= n; i++) { int x; rdint(x); if (x == 0) { addedge(st, i, 1); addedge(i, st, 0); } else { addedge(i, ed, 1); addedge(ed, i, 0); } } for (int i = 1; i <= m; i++) { int a, b; rdint(a); rdint(b); addedge(a, b, 1); addedge(b, a, 1); } dinic(); cout << ans << endl; return 0; }