• IO多路复用,协程,


    一.单线程的并发

    import socket
    import select
    
    client1 = socket.socket()
    client1.setblocking(False) # 百度创建连接: 非阻塞
    
    try:
        client1.connect(('www.baidu.com',80))
    except BlockingIOError as e:
        pass
    
    client2 = socket.socket()
    client2.setblocking(False) # 搜狗创建连接: 非阻塞
    try:
        client2.connect(('www.sogou.com',80))
    except BlockingIOError as e:
        pass
    
    client3 = socket.socket()
    client3.setblocking(False) # 创建连接: 非阻塞
    try:
        client3.connect(('www.aiqiyi.com',80))
    except BlockingIOError as e:
        pass
    
    socket_list = [client1,client2,client3]
    conn_list = [client1,client2,client3]
    
    while True:
        rlist,wlist,elist = select.select(socket_list,conn_list,[],0.005)
        # wlist中表示已经连接成功的socket对象
        for sk in wlist:
            if sk == client1:
                sk.sendall(b'GET /s?wd=alex HTTP/1.0
    host:www.baidu.com
    
    ')
            elif sk==client2:
                sk.sendall(b'GET /web?query=fdf HTTP/1.0
    host:www.sogou.com
    
    ')
            else:
                sk.sendall(b'GET /s?wd=alex HTTP/1.0
    host:www.aiqiyi.com
    
    ')
            conn_list.remove(sk)
        for sk in rlist:
            chunk_list = []
            while True:
                try:
                    chunk = sk.recv(8096)
                    if not chunk:
                        break
                    chunk_list.append(chunk)
                except BlockingIOError as e:
                    break
            body = b''.join(chunk_list)
            # print(body.decode('utf-8'))
            print('------------>',body)
            sk.close()
            socket_list.remove(sk)
        if not socket_list:
            break

    操作系统检测socket是否发生变化,有三种模式:
    select:最多1024个socket;循环去检测。
    poll:不限制监听socket个数;循环去检测(水平触发)。
    epoll:不限制监听socket个数;回调方式(边缘触发)。
    Python模块:
    select.select
    select.epoll

    二.协程

    协程:   是单线程下的并发,又称微线程,纤程。英文名Coroutine。

    一句话说明什么是协程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

    协程,是由程序员创造出来的一个不是真实存在的东西;

    协程:是微线程,对一个线程进程分片,使得线程在代码块之间进行来回切换执行,而不是在原来逐行执行。
    #1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
    #2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

    对比操作系统控制线程的切换,用户在单线程内控制协程的切换

    优点如下:

    #1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
    #2. 单线程内就可以实现并发的效果,最大限度地利用cpu

    缺点如下:

    #1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
    #2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

    总结协程特点:

    1. 必须在只有一个单线程里实现并发
    2. 修改共享数据不需加锁
    3. 用户程序里自己保存多个控制流的上下文栈
    4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

    三.greenlet模块

    安装 :pip3 install greenlet

    from greenlet import greenlet
    
    def eat(name):
        print('%s eat 1' %name)
        g2.switch('egon')
        print('%s eat 2' %name)
        g2.switch()
    def play(name):
        print('%s play 1' %name)
        g1.switch()
        print('%s play 2' %name)
    
    g1=greenlet(eat)
    g2=greenlet(play)
    
    g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要
    greenlet实现状态切换

    单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

    greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

    四.Gevent模块

    安装:pip3 install gevent

    Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是

    Greenlet,它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

    用法:

    g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,
    如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的 g2
    =gevent.spawn(func2) g1.join() #等待g1结束 g2.join() #等待g2结束 #或者上述两步合作一步:gevent.joinall([g1,g2]) g1.value#拿到func1的返回值
    import gevent
    def eat(name):
        print('%s eat 1' %name)
        gevent.sleep(2)
        print('%s eat 2' %name)
    
    def play(name):
        print('%s play 1' %name)
        gevent.sleep(1)
        print('%s play 2' %name)
    
    
    g1=gevent.spawn(eat,'egon')
    g2=gevent.spawn(play,name='egon')
    g1.join()
    g2.join()
    #或者gevent.joinall([g1,g2])
    print('')
    例:遇到io主动切换

    上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前

    或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

    from gevent import monkey;monkey.patch_all()
    
    import gevent
    import time
    def eat():
        print('eat food 1')
        time.sleep(2)
        print('eat food 2')
    
    def play():
        print('play 1')
        time.sleep(1)
        print('play 2')
    
    g1=gevent.spawn(eat)
    g2=gevent.spawn(play)
    gevent.joinall([g1,g2])
    print('')
    #   协程IO切换
    from
    gevent import monkey monkey.patch_all() # 以后代码中遇到IO都会自动执行greenlet的switch进行切换 import requests import gevent def get_page1(url): ret = requests.get(url) print(url,ret.content) def get_page2(url): ret = requests.get(url) print(url,ret.content) def get_page3(url): ret = requests.get(url) print(url,ret.content) gevent.joinall([ gevent.spawn(get_page1, 'https://www.python.org/'), # 协程1 gevent.spawn(get_page2, 'https://www.yahoo.com/'), # 协程2 gevent.spawn(get_page3, 'https://github.com/'), # 协程3 ])

    Gevent之同步与异步

    1.同步就是发生调用时,一定等待结果返回,整个调用才结束;按照顺序逐步执行;

    2异步,通知,执行完成之后自动执行回调函数或自动执行某些操作(通知)。

    比如做爬虫中向某个地址baidu.com发送请求,当请求执行完成之后自执行回调函数。

    from gevent import spawn,joinall,monkey;monkey.patch_all()
    
    import time
    def task(pid):
        """
        Some non-deterministic task
        """
        time.sleep(0.5)
        print('Task %s done' % pid)
    
    
    def synchronous():  # 同步
        for i in range(10):
            task(i)
    
    def asynchronous(): # 异步
        g_l=[spawn(task,i) for i in range(10)]
        joinall(g_l)
        print('DONE')
        
    if __name__ == '__main__':
        print('Synchronous:')
        synchronous()
        print('Asynchronous:')
        asynchronous()
    #  上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。
    #  初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,
    #  后者阻塞当前流程,并执行所有给定的greenlet任务。执行流程只会在所有greenlet执行完后才会继续向下走。

     同步异步与阻塞,非阻塞区别

      1.阻塞/非阻塞, 它们是程序在等待消息(无所谓同步或者异步)时的状态;

      2.同步/异步,是程序获得关注消息通知的机制。

    import socket
    import select
    
    class Req(object):
        def __init__(self,sk,func):
            self.sock = sk
            self.func = func
    
        def fileno(self):
            return self.sock.fileno()
    
    
    class Nb(object):
    
        def __init__(self):
            self.conn_list = []
            self.socket_list = []
    
        def add(self,url,func):
            client = socket.socket()
            client.setblocking(False)  # 非阻塞
            try:
                client.connect((url, 80))
            except BlockingIOError as e:
                pass
            obj = Req(client,func)
            self.conn_list.append(obj)
            self.socket_list.append(obj)
    
        def run(self):
    
            while True:
                rlist,wlist,elist = select.select(self.socket_list,self.conn_list,[],0.005)
                # wlist中表示已经连接成功的req对象
                for sk in wlist:
                    # 发生变换的req对象
                    sk.sock.sendall(b'GET /s?wd=alex HTTP/1.0
    host:www.baidu.com
    
    ')
                    self.conn_list.remove(sk)
                for sk in rlist:
                    chunk_list = []
                    while True:
                        try:
                            chunk = sk.sock.recv(8096)
                            if not chunk:
                                break
                            chunk_list.append(chunk)
                        except BlockingIOError as e:
                            break
                    body = b''.join(chunk_list)
                    # print(body.decode('utf-8'))
                    sk.func(body)
                    sk.sock.close()
                    self.socket_list.remove(sk)
                if not self.socket_list:
                    break
    基于事件循环实现的异步非阻塞框架

    Python中开源 基于事件循环实现的异步非阻塞框架 Twisted

    from twisted.web.client import getPage, defer
            from twisted.internet import reactor
    
            def all_done(arg):
                reactor.stop()
    
            def callback(contents):
                print(contents)
    
            deferred_list = []
            url_list = ['http://www.bing.com', 'http://www.baidu.com', ]
            for url in url_list:
                deferred = getPage(bytes(url, encoding='utf8'))
                deferred.addCallback(callback)
                deferred_list.append(deferred)
    
            dlist = defer.DeferredList(deferred_list)
            dlist.addBoth(all_done)
    
            reactor.run()
        

    小结

    使用gevent,可以获得极高的并发性能,但gevent只能在Unix/Linux下运行,在Windows下不保证正常安装和运行。

    由于gevent是基于IO切换的协程,所以最神奇的是,我们编写的Web App代码,不需要引入gevent的包,也不需要改任何代码,仅仅在部署的时候,用一个支持gevent的WSGI服务器,立刻就获得了数倍的性能提升。

    五.IO多路复用三种模式

    IO复用:为了解释这个名词,首先来理解下复用这个概念,复用也就是共用的意思,这样理解还是有些抽象,为此,咱们来理解下复用在通信领域的使用,在通信领域中为了充分利用网络连接的物理介质,往往在同一条网络链路上采用时分复用或频分复用的技术使其在同一链路上传输多路信号,到这里我们就基本上理解了复用的含义,即公用某个“介质”来尽可能多的做同一类(性质)的事,那IO复用的“介质”是什么呢?为此我们首先来看看服务器编程的模型,客户端发来的请求服务端会产生一个进程来对其进行服务,每当来一个客户请求就产生一个进程来服务,然而进程不可能无限制的产生,因此为了解决大量客户端访问的问题,引入了IO复用技术,即:一个进程可以同时对多个客户请求进行服务。也就是说IO复用的“介质”是进程(准确的说复用的是select和poll,因为进程也是靠调用select和poll来实现的),复用一个进程(select和poll)来对多个IO进行服务,虽然客户端发来的IO是并发的但是IO所需的读写数据多数情况下是没有准备好的,因此就可以利用一个函数(select和poll)来监听IO所需的这些数据的状态,一旦IO有数据可以进行读写了,进程就来对这样的IO进行服务。
    
      
    
    理解完IO复用后,我们在来看下实现IO复用中的三个API(select、poll和epoll)的区别和联系
    
    select,poll,epoll都是IO多路复用的机制,I/O多路复用就是通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知应用程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。三者的原型如下所示:
    
    int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
    
    int poll(struct pollfd *fds, nfds_t nfds, int timeout);
    
    int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);
    
    
    
     1.select的第一个参数nfds为fdset集合中最大描述符值加1,fdset是一个位数组,其大小限制为__FD_SETSIZE(1024),位数组的每一位代表其对应的描述符是否需要被检查。第二三四参数表示需要关注读、写、错误事件的文件描述符位数组,这些参数既是输入参数也是输出参数,可能会被内核修改用于标示哪些描述符上发生了关注的事件,所以每次调用select前都需要重新初始化fdset。timeout参数为超时时间,该结构会被内核修改,其值为超时剩余的时间。
    
     select的调用步骤如下:
    
    (1)使用copy_from_user从用户空间拷贝fdset到内核空间
    
    (2)注册回调函数__pollwait
    
    (3)遍历所有fd,调用其对应的poll方法(对于socket,这个poll方法是sock_poll,sock_poll根据情况会调用到tcp_poll,udp_poll或者datagram_poll)
    
    (4)以tcp_poll为例,其核心实现就是__pollwait,也就是上面注册的回调函数。
    
    (5)__pollwait的主要工作就是把current(当前进程)挂到设备的等待队列中,不同的设备有不同的等待队列,对于tcp_poll 来说,其等待队列是sk->sk_sleep(注意把进程挂到等待队列中并不代表进程已经睡眠了)。在设备收到一条消息(网络设备)或填写完文件数 据(磁盘设备)后,会唤醒设备等待队列上睡眠的进程,这时current便被唤醒了。
    
    (6)poll方法返回时会返回一个描述读写操作是否就绪的mask掩码,根据这个mask掩码给fd_set赋值。
    
    (7)如果遍历完所有的fd,还没有返回一个可读写的mask掩码,则会调用schedule_timeout是调用select的进程(也就是 current)进入睡眠。当设备驱动发生自身资源可读写后,会唤醒其等待队列上睡眠的进程。如果超过一定的超时时间(schedule_timeout 指定),还是没人唤醒,则调用select的进程会重新被唤醒获得CPU,进而重新遍历fd,判断有没有就绪的fd。
    
    (8)把fd_set从内核空间拷贝到用户空间。
    
    总结下select的几大缺点:
    
    (1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大
    
    (2)同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大
    
    (3)select支持的文件描述符数量太小了,默认是1024
    
     
    
    2.  poll与select不同,通过一个pollfd数组向内核传递需要关注的事件,故没有描述符个数的限制,pollfd中的events字段和revents分别用于标示关注的事件和发生的事件,故pollfd数组只需要被初始化一次。
    
     poll的实现机制与select类似,其对应内核中的sys_poll,只不过poll向内核传递pollfd数组,然后对pollfd中的每个描述符进行poll,相比处理fdset来说,poll效率更高。poll返回后,需要对pollfd中的每个元素检查其revents值,来得指事件是否发生。
    
     
    
    3.直到Linux2.6才出现了由内核直接支持的实现方法,那就是epoll,被公认为Linux2.6下性能最好的多路I/O就绪通知方法。epoll可以同时支持水平触发和边缘触发(Edge Triggered,只告诉进程哪些文件描述符刚刚变为就绪状态,它只说一遍,如果我们没有采取行动,那么它将不会再次告知,这种方式称为边缘触发),理论上边缘触发的性能要更高一些,但是代码实现相当复杂。epoll同样只告知那些就绪的文件描述符,而且当我们调用epoll_wait()获得就绪文件描述符时,返回的不是实际的描述符,而是一个代表就绪描述符数量的值,你只需要去epoll指定的一个数组中依次取得相应数量的文件描述符即可,这里也使用了内存映射(mmap)技术,这样便彻底省掉了这些文件描述符在系统调用时复制的开销。另一个本质的改进在于epoll采用基于事件的就绪通知方式。在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。
    
     
    
    epoll既然是对select和poll的改进,就应该能避免上述的三个缺点。那epoll都是怎么解决的呢?在此之前,我们先看一下epoll 和select和poll的调用接口上的不同,select和poll都只提供了一个函数——select或者poll函数。而epoll提供了三个函 数,epoll_create,epoll_ctl和epoll_wait,epoll_create是创建一个epoll句柄;epoll_ctl是注 册要监听的事件类型;epoll_wait则是等待事件的产生。
    
      对于第一个缺点,epoll的解决方案在epoll_ctl函数中。每次注册新的事件到epoll句柄中时(在epoll_ctl中指定 EPOLL_CTL_ADD),会把所有的fd拷贝进内核,而不是在epoll_wait的时候重复拷贝。epoll保证了每个fd在整个过程中只会拷贝 一次。
    
      对于第二个缺点,epoll的解决方案不像select或poll一样每次都把current轮流加入fd对应的设备等待队列中,而只在 epoll_ctl时把current挂一遍(这一遍必不可少)并为每个fd指定一个回调函数,当设备就绪,唤醒等待队列上的等待者时,就会调用这个回调 函数,而这个回调函数会把就绪的fd加入一个就绪链表)。epoll_wait的工作实际上就是在这个就绪链表中查看有没有就绪的fd(利用 schedule_timeout()实现睡一会,判断一会的效果,和select实现中的第7步是类似的)。
    
      对于第三个缺点,epoll没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子, 在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。
    
    总结:
    
    (1)select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用 epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在 epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的 时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间,这就是回调机制带来的性能提升。
    
    (2)select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要 一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内 部定义的等待队列),这也能节省不少的开销。
    select,poll,epoll

    这三种IO多路复用模型在不同的平台有着不同的支持,而epoll在windows下就不支持,好在我们有selectors模块,帮我们默认选择当前平台下最合适的

    
    
    #服务端
    from socket import *
    import selectors
    
    sel=selectors.DefaultSelector()
    def accept(server_fileobj,mask):
        conn,addr=server_fileobj.accept()
        sel.register(conn,selectors.EVENT_READ,read)
    
    def read(conn,mask):
        try:
            data=conn.recv(1024)
            if not data:
                print('closing',conn)
                sel.unregister(conn)
                conn.close()
                return
            conn.send(data.upper()+b'_SB')
        except Exception:
            print('closing', conn)
            sel.unregister(conn)
            conn.close()
    
    
    
    server_fileobj=socket(AF_INET,SOCK_STREAM)
    server_fileobj.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
    server_fileobj.bind(('127.0.0.1',8088))
    server_fileobj.listen(5)
    server_fileobj.setblocking(False) #设置socket的接口为非阻塞
    sel.register(server_fileobj,selectors.EVENT_READ,accept) #相当于网select的读列表里append了一个文件句柄server_fileobj,并且绑定了一个回调函数accept
    
    while True:
        events=sel.select() #检测所有的fileobj,是否有完成wait data的
        for sel_obj,mask in events:
            callback=sel_obj.data #callback=accpet
            callback(sel_obj.fileobj,mask) #accpet(server_fileobj,1)
    
    #客户端
    from socket import *
    c=socket(AF_INET,SOCK_STREAM)
    c.connect(('127.0.0.1',8088))
    
    while True:
        msg=input('>>: ')
        if not msg:continue
        c.send(msg.encode('utf-8'))
        data=c.recv(1024)
        print(data.decode('utf-8'))
    基于selectors模块实现聊天
  • 相关阅读:
    Android开发进阶——自定义View的使用及其原理探索
    Android开发——通过wifi接收IPCamera视频流
    (数据科学学习手札84)基于geopandas的空间数据分析——空间计算篇(上)
    (数据科学学习手札83)基于geopandas的空间数据分析——geoplot篇(下)
    (数据科学学习手札82)基于geopandas的空间数据分析——geoplot篇(上)
    (数据科学学习手札81)conda+jupyter玩转数据科学环境搭建
    (数据科学学习手札80)用Python编写小工具下载OSM路网数据
    (数据科学学习手札79)基于geopandas的空间数据分析——深入浅出分层设色
    实用的Python(3)超简单!基于Python搭建个人“云盘”
    (数据科学学习手札78)基于geopandas的空间数据分析——基础可视化
  • 原文地址:https://www.cnblogs.com/zwq-/p/9643538.html
Copyright © 2020-2023  润新知