• [题解] [bzoj4710] 分特产


    题面

    题解

    如果没有每个人都分的限制, 直接上组合数即可

    考虑容斥

    (f[i])为至少有(i)个人没有分到特产的方案, 我们可以知道

    [displaystyle f[i] = inom{n}{i}prod_{j = 1}^{m}inom{a_j+n-1-i}{n-1-i} ]

    其中(a_j)为第(j)种特产的数量

    [displaystyle inom{n}{m} = C_n^m ]

    解释一下上面的东西吧, 首先从(n)个数中选出(i)个数代表不选, 然后对于每一种特产, 相当于拿(n - 1 - i)块隔板插入将这(a_j)个特产分为(n - i)块, 注意到其中有一些块是可以为空的, 我们新建(n - 1 - i)个点, 要是选了这些点中的第(i)个点就代表第(i)块为空, 所以最后就是

    [displaystyle prod_{j = 1}^{m}inom{a_j+n-1-i}{n-1-i} ]

    实在不懂就去百度插板法详解吧, 这只是一篇题解, 我不会讲得太详细

    然后容斥系数是

    [displaystyle (-1)^i ]

    各位画个韦恩图就知道了

    所以, 最后的答案是

    [ans = sum_{i = 0}^{n}(-1)^if[i] ]

    Code

    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <vector>
    #define itn int
    #define reaD read
    #define N 2005
    #define mod 1000000007
    using namespace std;
    
    int n, m, a[N], c[N][N];
    long long ans = 0; 
    
    inline int read()
    {
    	int x = 0, w = 1; char c = getchar();
    	while(c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); }
    	while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
    	return x * w;
    }
    
    int main()
    {
    	n = reaD(); m = read(); 
    	for(int i = 1; i <= m; i++) a[i] = read();
    	for(int i = 0; i <= 2000; i++)
    	{
    		c[i][0] = 1; 
    		for(int j = 1; j <= i; j++) c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod; 
    	}
    	for(int i = 0; i <= n; i++)
    	{
    		long long res = i & 1 ? mod - 1 : 1; res = 1ll * res * c[n][i] % mod; 
    		for(int j = 1; j <= m; j++) res = 1ll * res * c[n + a[j] - 1 - i][n - 1 - i] % mod;
    		ans = (ans + res) % mod; 
    	}
    	printf("%lld
    ", ans); 
    	return 0;
    } 
    
  • 相关阅读:
    Write File in Vugen
    2016.5.15 随笔————查看class 的 Jad 反编译插件安装
    2016.5.15 随笔————Tomcat 配置文件 server.xml
    2016.5.10 随笔——Jmeter架入 java中使用 说明
    2016.5.10 随笔——SQL语句
    怎么和小孩一起玩--科学之旅:给孩子一场纯粹的玩耍(图)
    三味书屋 bbb
    亚信数据的组织结构
    深度学习的几个关键点
    数据可视化产品
  • 原文地址:https://www.cnblogs.com/ztlztl/p/11181876.html
Copyright © 2020-2023  润新知