• 激光相机数据融合(4)--KITTI数据集中matlab接口说明及扩展


    KITTI数据集接口已经提供了matlab接口,本篇将说明详细说明其应用并与PCL进行对接。PCL为C++点云处理语言库,详情可见:http://pointclouds.org/

    程序可以从官网下载,也可以从我的github上下载https://github.com/ZouCheng321/fusion_kitti,为运行本代码,必须先编译make.m文件。

    关于激光相机的demo为 run_demoVelodyne.m

    本例以读取 2011_09_26_drive_0005_sync场景,读取第一帧,为例

    首先设置读取路径和基本信息

    if nargin<1
      base_dir = './data/2011_09_26_drive_0005_sync';%场景路径
    end
    if nargin<2
      calib_dir = './data/2011_09_26';%标定文件路径
    end
    cam       = 2; % 第二个相机
    frame     = 0; % 帧数

    读取标定文件:

    % load calibration
    calib = loadCalibrationCamToCam(fullfile(calib_dir,'calib_cam_to_cam.txt'));
    Tr_velo_to_cam = loadCalibrationRigid(fullfile(calib_dir,'calib_velo_to_cam.txt'));
    
    % compute projection matrix velodyne->image plane
    R_cam_to_rect = eye(4);
    R_cam_to_rect(1:3,1:3) = calib.R_rect{1};
    P_velo_to_img = calib.P_rect{cam+1}*R_cam_to_rect*Tr_velo_to_cam; %内外参数

    其中P_velo_to_img 为上文所释的投影矩阵:KRTcl。 Tr_velo_to_cam 为RTcl矩阵,R_cam_to_rect为相机畸变矫正矩阵,calib.P_rect{cam+1}为相机内参。

    接下来读取图像和激光数据,并删除在相机平面后面的激光点:

    % load and display image
    img = imread(sprintf('%s/image_%02d/data/%010d.png',base_dir,cam,frame));
    fig = figure('Position',[20 100 size(img,2) size(img,1)]); axes('Position',[0 0 1 1]);
    imshow(img); hold on;
    
    % load velodyne points
    fid = fopen(sprintf('%s/velodyne_points/data/%010d.bin',base_dir,frame),'rb');
    velo = fread(fid,[4 inf],'single')';
    velo = velo(1:5:end,:); % remove every 5th point for display speed
    fclose(fid);
    
    % remove all points behind image plane (approximation
    idx = velo(:,1)<5;
    velo(idx,:) = [];

    最后就是投影过程:

    velo_img = project(velo(:,1:3),P_velo_to_img);

    在图像上显示,距离用颜色表示:

    cols = jet;
    for i=1:size(velo_img,1)
      col_idx = round(64*5/velo(i,1));
      plot(velo_img(i,1),velo_img(i,2),'o','LineWidth',4,'MarkerSize',1,'Color',cols(col_idx,:));
    end

    下面我将为大家说明获取保存为彩色点云,为后续算法做准备。

    首先去除投影到图像外界的点:

    X_plane=round(velo_img(:,2));
    Y_plane=round(velo_img(:,1));
    cloud=velo(:,1:3);
    indice=find(X_plane>size(img,1));
    X_plane(indice)=[];
    Y_plane(indice)=[];
    cloud(indice,:)=[];
    indice=find(X_plane<1);
    X_plane(indice)=[];
    Y_plane(indice)=[];
    cloud(indice,:)=[];
    indice=find(Y_plane>size(img,2));
    X_plane(indice)=[];
    Y_plane(indice)=[];
    cloud(indice,:)=[];
    indice=find(Y_plane<1);
    X_plane(indice)=[];
    Y_plane(indice)=[];
    cloud(indice,:)=[];

    然后获取图像每个点的RGB值:

    R=img(:,:,1);
    G=img(:,:,2);
    B=img(:,:,3);
    
    induv=sub2ind(size(R),X_plane,Y_plane);
    
    cloud(:,4)=double(R(induv))/255+1;
    cloud(:,5)=double(G(induv))/255+1;
    cloud(:,6)=double(B(induv))/255+1;

    最后将点云保存为pcd格式,借助了外部文件savepcd.m:

    savepcd('color_cloud.pcd',cloud');

    接下开用pcl库显示点云,请确保电脑已经安装pcl:

    cd view
    mkdir build
    cd build
    cmake ..
    make
    ./cloud_viewer ../../color_cloud.pcd

    可以看见融合后的彩色点云:

    至于如何利用所以帧建立地图将在后面的博客中介绍。

  • 相关阅读:
    慢性肾炎患者的家庭养护
    中国居民五谷膳食指南
    第二单元丨对环境的察觉
    一个人是否靠谱,闭环很重要
    打赢营销胜仗
    治本修身──中醫內分泌調節養生法
    理想的激励
    卓越演讲:打动听众必知必会的策略和方法(原书第3版)
    每日一题_191008
    每日一题_191007
  • 原文地址:https://www.cnblogs.com/zoucheng/p/7860827.html
Copyright © 2020-2023  润新知