Pseudoprime numbers
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3408 Accepted Submission(s): 1586
Problem Description
Fermat's theorem states that for any prime number p and for any integer a > 1, a^p == a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
Sample Output
no
no
yes
no
yes
yes
先判断是否为素数,如果不是再进行快速幂取模.
1 #include <bits/stdc++.h> 2 #define ll long long 3 using namespace std; 4 5 bool prim(ll x){ 6 bool flag = true; 7 for(int i=2;i<=sqrt(x);i++){ 8 if(x%i==0){ 9 flag = false; 10 break; 11 } 12 } 13 return flag; 14 } 15 16 ll pow(ll a,ll b,ll mod){ 17 ll ret = 1; 18 while(a){ 19 if(a&1){ 20 ret = ret*b%mod; 21 } 22 b = b*b%mod; 23 a>>=1; 24 } 25 return ret%mod; 26 } 27 28 ll n,m; 29 int main(){ 30 while(cin>>n>>m&&!(n==0&&m==0)){ 31 bool prime = prim(n); 32 if(!prime){ 33 ll ans = pow(n,m,n); 34 if(ans==m){ 35 cout<<"yes"<<endl; 36 }else{ 37 cout<<"no"<<endl; 38 } 39 }else{ 40 cout<<"no"<<endl; 41 } 42 } 43 return 0; 44 }