LRU缓存:
LRU缓存利用了这样的一种思想。LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,也就是说,LRU缓存把最近最少使用的数据移除,让给最新读取的数据。而往往最常读取的,也是读取次数最多的,所以,利用LRU缓存,我们能够提高系统的performance.
实现:
要实现LRU缓存,我们首先要用到一个类 LinkedHashMap。 用这个类有两大好处:一是它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最最不常读取的会放在最后(当然,它也可以实现按照插入顺序存储)。第二,LinkedHashMap本身有一个方法用于判断是否需要移除最不常读取的数,但是,原始方法默认不需要移除(这是,LinkedHashMap相当于一个linkedlist),所以,我们需要override这样一个方法,使得当缓存里存放的数据个数超过规定个数后,就把最不常用的移除掉。LinkedHashMap的API写得很清楚,推荐大家可以先读一下。
1 import java.util.LinkedHashMap; 2 import java.util.Collection; 3 import java.util.Map; 4 import java.util.ArrayList; 5 6 /** 7 * An LRU cache, based on <code>LinkedHashMap</code>. 8 * 9 * <p> 10 * This cache has a fixed maximum number of elements (<code>cacheSize</code>). 11 * If the cache is full and another entry is added, the LRU (least recently used) entry is dropped. 12 * 13 * <p> 14 * This class is thread-safe. All methods of this class are synchronized. 15 * 16 * <p> 17 * Author: Christian d'Heureuse, Inventec Informatik AG, Zurich, Switzerland<br> 18 * Multi-licensed: EPL / LGPL / GPL / AL / BSD. 19 */ 20 public class LRUCache<K,V> { 21 22 private static final float hashTableLoadFactor = 0.75f; 23 24 private LinkedHashMap<K,V> map; 25 private int cacheSize; 26 27 /** 28 * Creates a new LRU cache. 29 * @param cacheSize the maximum number of entries that will be kept in this cache. 30 */ 31 public LRUCache (int cacheSize) { 32 this.cacheSize = cacheSize; 33 int hashTableCapacity = (int)Math.ceil(cacheSize / hashTableLoadFactor) + 1; 34 map = new LinkedHashMap<K,V>(hashTableCapacity, hashTableLoadFactor, true) { 35 // (an anonymous inner class) 36 private static final long serialVersionUID = 1; 37 @Override protected boolean removeEldestEntry (Map.Entry<K,V> eldest) { 38 return size() > LRUCache.this.cacheSize; }}; } 39 40 /** 41 * Retrieves an entry from the cache.<br> 42 * The retrieved entry becomes the MRU (most recently used) entry. 43 * @param key the key whose associated value is to be returned. 44 * @return the value associated to this key, or null if no value with this key exists in the cache. 45 */ 46 public synchronized V get (K key) { 47 return map.get(key); } 48 49 /** 50 * Adds an entry to this cache. 51 * The new entry becomes the MRU (most recently used) entry. 52 * If an entry with the specified key already exists in the cache, it is replaced by the new entry. 53 * If the cache is full, the LRU (least recently used) entry is removed from the cache. 54 * @param key the key with which the specified value is to be associated. 55 * @param value a value to be associated with the specified key. 56 */ 57 public synchronized void put (K key, V value) { 58 map.put (key, value); } 59 60 /** 61 * Clears the cache. 62 */ 63 public synchronized void clear() { 64 map.clear(); } 65 66 /** 67 * Returns the number of used entries in the cache. 68 * @return the number of entries currently in the cache. 69 */ 70 public synchronized int usedEntries() { 71 return map.size(); } 72 73 /** 74 * Returns a <code>Collection</code> that contains a copy of all cache entries. 75 * @return a <code>Collection</code> with a copy of the cache content. 76 */ 77 public synchronized Collection<Map.Entry<K,V>> getAll() { 78 return new ArrayList<Map.Entry<K,V>>(map.entrySet()); } 79 80 } // end class LRUCache 81 ------------------------------------------------------------------------------------------ 82 // Test routine for the LRUCache class. 83 public static void main (String[] args) { 84 LRUCache<String,String> c = new LRUCache<String, String>(3); 85 c.put ("1", "one"); // 1 86 c.put ("2", "two"); // 2 1 87 c.put ("3", "three"); // 3 2 1 88 c.put ("4", "four"); // 4 3 2 89 if (c.get("2") == null) throw new Error(); // 2 4 3 90 c.put ("5", "five"); // 5 2 4 91 c.put ("4", "second four"); // 4 5 2 92 // Verify cache content. 93 if (c.usedEntries() != 3) throw new Error(); 94 if (!c.get("4").equals("second four")) throw new Error(); 95 if (!c.get("5").equals("five")) throw new Error(); 96 if (!c.get("2").equals("two")) throw new Error(); 97 // List cache content. 98 for (Map.Entry<String, String> e : c.getAll()) 99 System.out.println (e.getKey() + " : " + e.getValue()); }
代码出自:http://www.source-code.biz/snippets/java/6.htm
在博客 http://gogole.iteye.com/blog/692103 里,作者使用的是双链表 + hashtable 的方式实现的。如果在面试题里考到如何实现LRU,考官一般会要求使用双链表 + hashtable 的方式。 所以,我把原文的部分内容摘抄如下:
双链表 + hashtable实现原理:
将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接加到链表头中。这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的Cache。当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。
1 public class LRUCache { 2 3 private int cacheSize; 4 private Hashtable<Object, Entry> nodes;//缓存容器 5 private int currentSize; 6 private Entry first;//链表头 7 private Entry last;//链表尾 8 9 public LRUCache(int i) { 10 currentSize = 0; 11 cacheSize = i; 12 nodes = new Hashtable<Object, Entry>(i);//缓存容器 13 } 14 15 /** 16 * 获取缓存中对象,并把它放在最前面 17 */ 18 public Entry get(Object key) { 19 Entry node = nodes.get(key); 20 if (node != null) { 21 moveToHead(node); 22 return node; 23 } else { 24 return null; 25 } 26 } 27 28 /** 29 * 添加 entry到hashtable, 并把entry 30 */ 31 public void put(Object key, Object value) { 32 //先查看hashtable是否存在该entry, 如果存在,则只更新其value 33 Entry node = nodes.get(key); 34 35 if (node == null) { 36 //缓存容器是否已经超过大小. 37 if (currentSize >= cacheSize) { 38 nodes.remove(last.key); 39 removeLast(); 40 } else { 41 currentSize++; 42 } 43 node = new Entry(); 44 } 45 node.value = value; 46 //将最新使用的节点放到链表头,表示最新使用的. 47 moveToHead(node); 48 nodes.put(key, node); 49 } 50 51 /** 52 * 将entry删除, 注意:删除操作只有在cache满了才会被执行 53 */ 54 public void remove(Object key) { 55 Entry node = nodes.get(key); 56 //在链表中删除 57 if (node != null) { 58 if (node.prev != null) { 59 node.prev.next = node.next; 60 } 61 if (node.next != null) { 62 node.next.prev = node.prev; 63 } 64 if (last == node) 65 last = node.prev; 66 if (first == node) 67 first = node.next; 68 } 69 //在hashtable中删除 70 nodes.remove(key); 71 } 72 73 /** 74 * 删除链表尾部节点,即使用最后 使用的entry 75 */ 76 private void removeLast() { 77 //链表尾不为空,则将链表尾指向null. 删除连表尾(删除最少使用的缓存对象) 78 if (last != null) { 79 if (last.prev != null) 80 last.prev.next = null; 81 else 82 first = null; 83 last = last.prev; 84 } 85 } 86 87 /** 88 * 移动到链表头,表示这个节点是最新使用过的 89 */ 90 private void moveToHead(Entry node) { 91 if (node == first) 92 return; 93 if (node.prev != null) 94 node.prev.next = node.next; 95 if (node.next != null) 96 node.next.prev = node.prev; 97 if (last == node) 98 last = node.prev; 99 if (first != null) { 100 node.next = first; 101 first.prev = node; 102 } 103 first = node; 104 node.prev = null; 105 if (last == null) 106 last = first; 107 } 108 /* 109 * 清空缓存 110 */ 111 public void clear() { 112 first = null; 113 last = null; 114 currentSize = 0; 115 } 116 117 } 118 119 class Entry { 120 Entry prev;//前一节点 121 Entry next;//后一节点 122 Object value;//值 123 Object key;//键 124 }
转自:http://blog.csdn.net/beiyeqingteng/article/details/7010411