• [NOIp2012] 国王游戏(排序 + 贪心 + 高精度)


    题意

    给你两个长为 (n+1) 的数组 (a,b) ,你需要定义一个顺序 (p)(p_0) 永远为 (0)

    能够最小化

    [max_{i=1}^{n} frac{prod_{j = 0}^{i} a_{p_j}}{b_{p_i}} ]

    (1 le n le 1000, 1 le a, b le 10^4)

    题解

    开始把原来没做完的 (NOIp) 题都水掉qwq

    类似这种题都需要有个巧妙的排序方法,使得答案最小,其实可以大力找规律或者猜结论发现按 (a_i imes b_i) 排序是最优秀的。

    我们尝试推导这个结论。

    其实我们发现只需要考虑相邻两个数如何交换才是最优的,因为任意排列都可以由交换相邻两个数得到。

    假设当前两个位置为 (i, i+1) ,记 (displaystyle p = prod_{j = 0}^{i - 1}a_j)

    我们令 (ans_0) 为交换前的最大值,(ans_1) 为交换后的,那么有

    [egin{cases} ans_0 &= max{frac{p}{b_i}, frac{p imes a_i}{b_{i+1}}} \ ans_1 &= max{frac{p}{b_{i+1}}, frac{p imes a_{i+1}}{b_{i}}} end{cases} ]

    因为有

    [forall i, a_i, b_i ge 1 ]

    不难发现有

    [egin{cases} displaystyle frac{p imes a_i}{b_{i+1}} ge frac{p}{b_{i+1}} \ displaystyle frac{p imes a_{i+1}}{b_{i}} ge frac{p}{b_i} end{cases} ]

    所以当 (ans_1 ge ans_0) 也就是交换后不会更优,当且仅当

    [egin{aligned} frac{p imes a_{i+1}}{b_{i}} &ge frac{p imes a_i}{b_{i+1}} \ a_{i + 1} imes b_{i + 1} &ge a_i imes b_i end{aligned} ]

    所以我们不难发现当 (a_i imes b_i) 升序的时候是最优的。

    然后答案需要用高精度存储,但是我不想写。。。(用 (python) 水过了2333)

    考试时候应该还是会头铁写高精度的。。

    总结

    对于重排序列使得一些要求的东西最优的时候,可以考虑不等式推导。

    然后也不需要考虑相隔很远的两个数,可以考虑相邻两个数,结论也是一样的,因为交换相邻两个数也可以使得序列排序。

    代码

    教你 (17)(python3) 代码水过2333

    n = (int)(input())
    a, b = map(int, input().split())
    array = [[0] * 2] * n
    for i in range(0, n):
    	array[i] = list(map(int, input().split()))
    
    def Cmp(elem):
    	return elem[0] * elem[1]
    array.sort(key = Cmp)
    
    ans = 0
    tot = a
    for i in range(0, n):
    	ans = max(ans, tot // array[i][1])
    	tot = tot * array[i][0]
    
    print(ans)
    
  • 相关阅读:
    linux文件管理之查找
    linux文件管理之管道与重定向
    linux文件管理之proc文件系统
    linux文件管理之bash shell
    linux进程管理之作业控制
    linux进程管理之优先级
    linux进程管理之信号控制
    Inno Setup制作最简单的安装程序
    intel汇编笔记
    WINDOWS程序设计对话框加载显示bmp图像及刷新
  • 原文地址:https://www.cnblogs.com/zjp-shadow/p/9825225.html
Copyright © 2020-2023  润新知