• tensorflow SavedModelBuilder用法


    训练代码:

    # coding: utf-8
    from __future__ import print_function
    from __future__ import division
    
    import tensorflow as tf
    import numpy as np
    import argparse
    
    
    def dense_to_one_hot(input_data, class_num):
        data_num = input_data.shape[0]
        index_offset = np.arange(data_num) * class_num
        labels_one_hot = np.zeros((data_num, class_num))
        labels_one_hot.flat[index_offset + input_data.ravel()] = 1
        return labels_one_hot
    
    
    def build_parser():
        parser = argparse.ArgumentParser()
        parser.add_argument('--data_path', type=str, required=True)
        parser.add_argument('--model_dir', type=str, required=True)
        args = parser.parse_args()
        return args
    
    
    p = build_parser()
    origin = np.genfromtxt(p.data_path, delimiter=',')
    
    data = origin[:, 0:2]
    labels = origin[:, 2]
    
    
    learning_rate = 0.001
    training_epochs = 5000
    display_step = 1
    
    n_features = 2
    n_class = 2
    x = tf.placeholder(tf.float32, [None, n_features], "input")
    y = tf.placeholder(tf.float32, [None, n_class])
    
    W = tf.Variable(tf.zeros([n_features, n_class]), name="w")
    b = tf.Variable(tf.zeros([n_class]), name="b")
    
    scores = tf.nn.xw_plus_b(x, W, b, name='scores')
    pred_proba = tf.nn.softmax(scores, name="pred_proba")
    
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=scores, labels=y))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    
    saver = tf.train.Saver()
    tf.add_to_collection('pred_proba', pred_proba)
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(training_epochs):
            result_pred_proba, _, c = sess.run([pred_proba, optimizer, cost],
                                               feed_dict={x: data, y: dense_to_one_hot(labels.astype(int), 2)})
            if epoch % 100 == 0:
                print(c)
        builder = tf.saved_model.builder.SavedModelBuilder(p.model_dir)
        inputs = {'input': tf.saved_model.utils.build_tensor_info(x)}
        outputs = {'pred_proba': tf.saved_model.utils.build_tensor_info(pred_proba)}
        signature = tf.saved_model.signature_def_utils.build_signature_def(inputs, outputs, 'test_sig_name')
        builder.add_meta_graph_and_variables(sess, ['test_saved_model'], {'test_signature': signature})
        builder.save()
    

    推理代码:

    # coding: utf-8
    from __future__ import print_function
    from __future__ import division
    
    import tensorflow as tf
    import numpy as np
    import argparse
    
    
    def build_parser():
        parser = argparse.ArgumentParser()
        parser.add_argument('--model_dir', type=str, required=True)
        args = parser.parse_args()
        return args
    
    p = build_parser()
    
    with tf.Session() as sess:
        signature_key = 'test_signature'
        input_key = 'input'
        output_key = 'pred_proba'
    
        meta_graph_def = tf.saved_model.loader.load(sess, ['test_saved_model'], p.model_dir)
        signature = meta_graph_def.signature_def
        x_tensor_name = signature[signature_key].inputs[input_key].name
        y_tensor_name = signature[signature_key].outputs[output_key].name
        x = sess.graph.get_tensor_by_name(x_tensor_name)
        y = sess.graph.get_tensor_by_name(y_tensor_name)
        r = sess.run(y, feed_dict={x: np.array([[0.6211, 5]])})
        print(r)
        print(0 if r[0][0] > r[0][1] else 1)
    

    参考资料

    TensorFlow saved_model 模块

  • 相关阅读:
    user.table.column, table.column 或列说明无效
    spring计划任务,springMvc计划任务,Spring@Scheduled,spring定时任务
    easyui-treegrid移除树节点出错
    jquery easyui easyui-treegrid 使用异步加载数据
    Java动态调用webService,axis2动态调用webService
    让IE支持Css3属性(圆角、阴影、渐变)
    float浮动之后高度自适应失效解决方案
    td中使用overflow:hidden; 无效解决方案
    jquery插件select2事件不起作用(select2-3.5.4)
    wsdl自动生成Java代码,根据wsdl生成Java代码
  • 原文地址:https://www.cnblogs.com/zhouyang209117/p/8424325.html
Copyright © 2020-2023  润新知