• 2016猿辅导初中数学竞赛训练营作业题解答-4


    扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元).

    用待定系数法分解因式(1-6题)

    1. $x^2 + xy - 2y^2 + 2x + 7y - 3$

    解答: $$x^2 + xy - 2y^2 + 2x + 7y - 3 = (x + 2y + a)(x - y + b)$$ $$= x^2 + xy - 2y^2 + (a + b)x + (2b - a)y + ab$$ $$Rightarrow egin{cases}a+b = 2\ 2b - a = 7\ ab = -3 end{cases}Rightarrow egin{cases}a = -1\ b =3 end{cases}$$ $$Rightarrow x^2 + xy - 2y^2 + 2x + 7y - 3 = (x - y + 3)(x + 2y - 1).$$

    2. $a^2 - 3b^2 - 8c^2 + 2ab + 2ac + 14bc$

    解答: $$a^2 - 3b^2 - 8c^2 + 2ab + 2ac + 14bc = (a + 3b + mc)(a - b + nc)$$ $$= a^2 - 3b^2 + 2ab + (m + n)ac + (3n - m)bc + mnc^2$$ $$Rightarrow egin{cases}m + n = 2\ 3n - m = 14\ mn = -8 end{cases}Rightarrow egin{cases}m = -2\ n = 4end{cases}$$ $$Rightarrow a^2 - 3b^2 - 8c^2 + 2ab + 2ac + 14bc = (a + 3b - 2c)(a - b + 4c).$$

    3. $2x^2 - 5xy - 3y^2 + 3x + 5y - 2$

    解答: $$2x^2 - 5xy - 3y^2 + 3x + 5y - 2 = (2x + y + a)(x - 3y + b)$$ $$= 2x^2 - 5xy - 3y^2 + (a + 2b)x + (b - 3a)y + ab$$ $$Rightarrow egin{cases}a + 2b = 3\ b - 3a = 5\ ab = -2 end{cases} Rightarrow egin{cases}a = -1\ b = 2 end{cases}$$ $$Rightarrow 2x^2 - 5xy - 3y^2 + 3x + 5y - 2 = (2x + y - 1)(x - 3y + 2).$$

    4. $2x^2 + 3xy - 2y^2 - 5x + 5y - 3$

    解答: $$2x^2 + 3xy - 2y^2 - 5x + 5y - 3 = (2x - y + a)(x + 2y + b)$$ $$= 2x^2 + 3xy - 2y^2 + (a + 2b)x + (2a - b)y + ab$$ $$Rightarrow egin{cases}a + 2b = -5\ 2a - b = 5\ ab = -3end{cases}$$ $$Rightarrow a = 1\ b = -3$$ $$Rightarrow 2x^2 + 3xy - 2y^2 - 5x + 5y - 3 = (2x - y + 1)(x + 2y - 3).$$

    5. $x^4 + 4x^3 + 3x^2 + 4x + 2$

    解答:

    令原式 $=f(x)$, 验证 $f(-1)$, $f(1)$, $f(-2)$, $f(2)$, 均不等于 $0$. 因此其不含有一次因式, 即为两个二次因式乘积形式: $$x^4 + 4x^3 + 3x^2 + 4x + 2 = (x^2 + ax + b)(x^2 + cx + d)$$ $$= x^4 + (a+c)x^3 + (b + d + ac)x^2 + (ad + bc)x + bd$$ $$Rightarrow egin{cases}a + c = 4\ b + d + ac = 3\ ad + bc = 4\ bd = 2 end{cases}Rightarrow egin{cases}b = pm1\ d = pm2 end{cases}.$$ 验证 $b = 1$, $d = 2$ 可得$$egin{cases}a + c = 4\ ac = 0\ 2a + c = 4 end{cases}Rightarrow egin{cases}a = 0\ c = 4 end{cases}$$ $$Rightarrow x^4 + 4x^3 + 3x^2 + 4x + 2 = (x^2 + 1)(x^2 + 4x + 2).$$ 另解: $$x^4 + 4x^3 + 3x^2 + 4x + 2 = (x^2 + 1)^2 + 4x^3 + x^2 + 4x + 1$$ $$= (x^2 + 1)^2 + 4x(x^2 + 1) + (x^2 + 1) = (x^2 + 1)(x^2 + 4x + 2).$$

    6. $a^5 + a + 1$

    解答:

    令原式 $= f(a)$, 验证 $f(-1)$, $f(1)$, 均不为 $0$. 因此 $f(a)$ 不含有一次因式, 即只能分解为一个二次因式与一个三次因式之乘积: $$a^5 + a + 1 = (a^2 +ma + n)(a^3 + pa^2 + qa + r)$$ $$= a^5 + (m + p)a^4 + (mp + q + n)a^3 + (r + mq + np)a^2 + (mr + nq)a + nr$$ $$Rightarrow egin{cases}m + p = 0\ mp + q + n = 0\ r + mq + np = 0\ mr + nq = 1\ nr = 1 end{cases}Rightarrow egin{cases}n = pm1\ r = pm1 end{cases}$$ 验证 $n = 1$, $r = 1$ 可得 $$egin{cases}m + p = 0\ mp + q + 1 = 0\ 1 + mq + p = 0\ m + q = 1end{cases} Rightarrow mp + q - mq - p = 0 Rightarrow (m - 1)(p - q) = 0 Rightarrow egin{cases}m = 1\ p = -1\ q = 0 end{cases}$$ $$Rightarrow a^5 + a + 1 = (a^2 + a + 1)(a^3 - a^2 + 1).$$ 另解: $$a^5 + a + 1 = a^5 - a^2 + a^2 + a + 1$$ $$= a^2(a - 1)(a^2 + a + 1)+ (a^2 + a + 1) = (a^2 + a + 1)(a^3 - a^2 + 1).$$

    7. 确定 $m$ 的值, 使 $x^2 + 2xy - 8y^2 + 2x + 14y +m$ 能分解为两个一次式的积.

    解答: $$x^2 + 2xy - 8y^2 + 2x + 14y + m = (x - 2y + a)(x + 4y + b)$$ $$= x^2 + 2xy - 8y^2 + (a + b)x + (4a - 2b)y + ab$$ $$Rightarrow egin{cases}a + b = 2\ 4a - 2b = 14\ ab = m end{cases}Rightarrow egin{cases}a = 3\ b = -1\ m = -3end{cases}$$ $$Rightarrow x^2 + 2xy - 8y^2 + 2x + 14y + m = (x - 2y + 3)(x + 4y - 1).$$

    赵胤老师微信二维码:


    作者:赵胤
    出处:http://www.cnblogs.com/zhaoyin/
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    iOS:解决打包可能会出现环境错误问题
    iOS:关于self.perfrom(:_, with: afterDelay: )不执行问题
    docker容器中安装vi命令
    java-1 基础一
    java-0 重拾java
    柯里化函数的实现
    flex布局最后一行列表左对齐的N种方法
    【第一弹】微服务认证与授权企业级理解
    MySQL性能优化(慢查询日志、Explain执行计划、show profile、MySQL服务优化)
    MySQL锁详解
  • 原文地址:https://www.cnblogs.com/zhaoyin/p/5969139.html
Copyright © 2020-2023  润新知