• 一文快速了解MaxCompute


    很多刚初次接触MaxCompute的用户,面对繁多的产品文档内容以及社区文章,往往很难快速、全面了解MaxCompute产品全貌。同时,很多拥有大数据开发经验的开发者,也希望能够结合自身的背景知识,将MaxCompute产品能力与开源项目、商业软件之间建立某种关联和映射,以快速寻找或判断MaxCompute是否满足自身的需要,并结合相关经验更轻松地学习和使用产品。

    本文将站在一个更宏观的视角来分主题地介绍MaxCompute产品,以期读者能够通过本文快速获取对MaxCompute产品的认识。

    概念篇

    产品名称:大数据计算服务(英文名:MaxCompute)

    产品说明:MaxCompute(原ODPS)是一项大数据计算服务,它能提供快速、完全托管的PB级数据仓库解决方案,使您可以经济并高效的分析处理海量数据。

    产品说明的前半部分,将MaxCompute定义为大数据计算服务,可以理解为它的功能定位于支持大数据计算,同时是一款基于云的服务化的产品。后半部分,说明了它的适用场景:大规模数据仓库、海量数据处理、分析。

    单从这里还不能了解到大数据计算服务提供了哪些的计算能力,具备怎样的服务化?产品定义中出现了数据仓库字眼,我们能够了解到MaxCompute能够处理较大规模(这里提到了PB级别)结构化数据。而“海量数据处理”除了数据规模大之外,对于非结构化数据的处理有待验证,同时”分析”是否在常见的SQL分析能力之外,提供了其他复杂分析的能力。

    带着这样的问题,我们继续开始介绍,希望在后面的内容中能够清晰地回答这些问题。

    架构篇

    在介绍功能前,先提纲挈领从产品整体逻辑结构开始,让读者有个全貌了解。

    MaxCompute提供了云原生、多租户的服务架构,在底层大规模计算、存储资源之上预先构建好了MaxCompute计算服务、服务接口,提供了配套的安全管控手段和开发工具管理工具,产品开箱即用。

    用户可以在阿里云控制台,在几分钟内完成服务开通并创建MaxCompute项目,无需进行底层资源开通、软件部署、基础设施运维,系统自动进行(由阿里云专业团队)版本升级、问题修复。

    功能篇

    数据存储

    • 支持大规模计算存储,适用于TB以上规模的存储及计算需求,最大可达EB级别。同一个MaxCompute项目支持企业从创业团队发展到独角兽的数据规模需求;
    • 数据分布式存储,多副本冗余,数据存储对外仅开放表的操作接口,不提供文件系统访问接口
    • 自研数据存储结构,表数据列式存储,默认高度压缩,后续将提供兼容ORC的Ali-ORC存储格式
    • 支持外表,将存储在OSS对象存储、OTS表格存储的数据映射为二维表
    • 支持Partition、Bucket的分区、分桶存储
    • 更底层不是HDFS,是阿里自研的盘古文件系统,但可借助HDFS理解对应的表之下文件的体系结构、任务并发机制
    • 使用时,存储与计算解耦,不需要仅仅为了存储扩大不必要的计算资源

    多种计算模型

    需要说明的是,传统数据仓库场景下,实践中有大部分的数据分析需求可以通过SQL+UDF来完成。但随着企业对数据价值的重视以及更多不同的角色开始使用数据时,企业也会要求有更丰富的计算功能来满足不同场景、不同用户的需求。

    MaxCompute不仅仅提供SQL数据分析语言,它在统一的数据存储和权限体系之上,支持了多种计算类型。

    MaxCompute SQL:

    TPC-DS 100% 支持,同时语法高度兼容Hive,有Hive背景开发者直接上手,特别在大数据规模下性能强大。

    • 完全自主开发的compiler,语言功能开发更灵活,迭代快,语法语义检查更加灵活高效
    • 基于代价的优化器,更智能,更强大,更适合复杂的查询
    • 基于LLVM的代码生成,让执行过程更高效
    • 支持复杂数据类型(array,map,struct)
    • 支持Java、Python语言的UDF/UDAF/UDTF
    • 语法:Values、CTE、SEMIJOIN、FROM倒装、Subquery Operations、Set Operations(UNION /INTERSECT /MINUS)、SELECT TRANSFORM 、User Defined Type、GROUPING SET(CUBE/rollup/GROUPING SET)、脚本运行模式、参数化视图
    • 支持外表(外部数据源+StorageHandler 支持非结构化数据)

    MapReduce:

    • 支持MapReduce编程接口(提供优化增强的MaxCompute MapReduce,也提供高度兼容Hadoop的MapReduce版本)
    • 不暴露文件系统,输入输出都是表
    • 通过MaxCompute客户端工具、Dataworks提交作业

    MaxCompute Graph图模型:

    • MaxCompute Graph是一套面向迭代的图计算处理框架。图计算作业使用图进行建模,图由点(Vertex)和边(Edge)组成,点和边包含权值(Value)。
    • 通过迭代对图进行编辑、演化,最终求解出结果
    • 典型应用有:PageRank,单源最短距离算法,K-均值聚类算法等
    • 使用MaxCompute Graph提供的接口Java SDK编写图计算程序并通过MaxCompute客户端工具通过jar命令提交任务

    PyODPS:

    用熟悉的Python利用MaxCompute大规模计算能力处理MaxCompute数据。

    PyODPS是MaxCompute 的 Python SDK,同时也提供 DataFrame 框架,提供类似 pandas 的语法,能利用 MaxCompute 强大的处理能力来处理超大规模数据。

    • PyODPS 提供了对 ODPS 对象比如 表 、资源 、函数 等的访问。
    • 支持通过 run_sql/execute_sql 的方式来提交 SQL。
    • 支持通过 open_writer 和 open_reader 或者原生 tunnel API 的方式来上传下载数据
    • PyODPS 提供了 DataFrame API,它提供了类似 pandas 的接口,能充分利用 MaxCompute 的计算能力进行DataFrame的计算。
    • PyODPS DataFrame 提供了很多 pandas-like 的接口,但扩展了它的语法,比如增加了 MapReduce API 来扩展以适应大数据环境。
    • 利用map 、apply 、map_reduce 等方便在客户端写函数、调用函数的方法,用户可在这些函数里调用三方库,如pandas、scipy、scikit-learn、nltk

    Spark:

    MaxCompute提供了Spark on MaxCompute的解决方案,使MaxCompute提供的兼容开源的Spark计算服务,让它在统一的计算资源和数据集权限体系之上,提供Spark计算框架,支持用户以熟悉的开发使用方式提交运行Spark作业。

    • 支持原生多版本Spark作业:Spark1.x/Spark2.x作业都可运行;
    • 开源系统的使用体验:Spark-submit提交方式(暂不支持spark-shell/spark-sql的交互式),提供原生的Spark WebUI供用户查看;
    • 通过访问OSS、OTS、database等外部数据源,实现更复杂的ETL处理,支持对OSS非结构化进行处理;
    • 使用Spark面向MaxCompute内外部数据开展机器学习,扩展应用场景;

    交互式分析(Lightning)

    MaxCompute产品的交互式查询服务,特性如下:

    • 兼容PostgreSQL:兼容PostgreSQL协议的JDBC/ODBC接口,所有支持PostgreSQL数据库的工具或应用使用默认驱动都可以轻松地连接到MaxCompute项目。支持主流BI及SQL客户端工具的连接访问,如Tableau、帆软BI、Navicat、SQL Workbench/J等。
    • 显著提升的查询性能:提升了一定数据规模下的查询性能,查询结果秒级可见,支持BI分析、Ad-hoc、在线服务等场景;

    机器学习:

    • MaxCompute内建支持的上百种机器学习算法,目前MaxCompute的机器学习能力由PAI产品进行统一提供服务,同时PAI提供了深度学习框架、Notebook开发环境、GPU计算资源、模型在线部署的弹性预测服务。PAI产品与MaxCompute在项目和数据方面无缝集成。

    对比篇

    为便于读者,特别是有开源社区经验的读者快速建立对MaxCompute主要功能的了解,这里做简单地映射说明。

    问题篇

    dataworks和MaxCompute之间的关系与区别?

    这是2个产品,MaxCompute做数据存储和数据分析处理,Dataworks是集成了数据集成、数据开发调试、作业编排及运维、元数据管理、数据质量管理、数据API服务等等功能的大数据开发IDE套件。类似Spark和HUE的关系,不知道这个对比是否准确。

    想测试、体验MaxCompute,成本费用高吗?

    不高,应该说很低。MaxCompute提供了按作业付费的模式,其中单个作业的费用有和作业处理的数据大小密切相关。开通按量付费服务,并创建1项目。利用MaxCompute客户端工具(ODPSCMD)或者在dataworks里,创建表并上传测试数据,就可以开始测试体验了。数据不大的话,10元钱可以用很长一段时间。

    当然,MaxCompute还有独占资源的模式,出于费用可控的考虑,也选择了预付费的模式。

    另外,MaxCompute马上推出”开发者版”,每个月为开发者赠送一定的免费额度用于开发、学习。

    MaxCompute存储目前只暴露表,能处理非结构化数据吗?

    可以,非结构化数据可以存放在OSS上,一种方式是通过外表方式,通过自定义Extractor来实现非结构化处理为结构化数据的逻辑。另外,也可以用Spark on MaxCompute对OSS进行访问,通过Spark程序对OSS目录下的文件进行抽取转换,结果写入MaxCompute表。

    支持哪些数据源接入到MaxCompute

    通过Dataworks数据集成服务或者自己使用DataX,可以实现阿里云上的各种离线数据源如数据库、HDFS、FTP等数据源的接入;

    也可以用MaxCompute Tunnel工具/SDK,通过命令或SDK批量进行数据上传、下载;

    流式数据,可以利用MaxCompute提供的Flume/logstash插件,将流式数据写入Datahub,然后归档到MaxCompute表;

    支持阿里云SLS、DTS服务数据写入MaxCompute表;

    总结

    本文简要介绍了MaxCompute这个产品基本概念和功能,并和大家熟悉的开源社区服务进行了对比映射,希望对大家快速了解阿里云大数据计算服务。

    更多的内容见MaxCompute产品官方地址:https://www.aliyun.com/product/odps

     

     

     

    原文链接
    更多技术干货 请关注阿里云云栖社区微信号 :yunqiinsight

  • 相关阅读:
    Linux文本检索命令grep笔记
    Linux文本检索命令grep笔记
    Linux文件查询笔记
    Linux文件查询笔记
    Linux文件默认权限和umask笔记
    Linux文件默认权限和umask笔记
    Linux关于文件的权限笔记
    Linux关于文件的权限笔记
    Linux文件操作实用笔记
    6.创建自定义菜单
  • 原文地址:https://www.cnblogs.com/zhaowei121/p/10511580.html
Copyright © 2020-2023  润新知