• 跟锦数学2017年01月


    (170131) 设 $u$ 为 $n$ 维欧氏空间 $bR^5$ 中的单位向量, 定义 $T_u(x)=x-2sef{x,u}u$. 现设 $al,e$ 是 $bR^5$ 中线性无关的两个单位向量, 问当 $al,e$ 满足什么条件时, 存在正整数 $k$ 使得 $(T_al T_e)^k$ 为单位映射. 

     

    (170130) 试建立 $[0,1]$ 到 $(0,1)$ 之间的一一对应. 

     

    (170129) 试证: $$ex 2arctan x+arcsin f{2x}{1+x^2}=pi,quad x>1. eex$$ 

     

    (170128) 设 $X$ 是 Banach 空间, $f$ 是 $X^2$ 到 $X$ 的双线性映射. 若 $$ex exists 0<al<f{1}{4sen{f}},quad sen{f} =sup_{sen{u},sen{v}leq 1} sen{f(u,v)}, eex$$ 则 $$ex forall ain B(0,al), exists | xin B(0,2al),st x=a+f(x,x). eex$$ 

     

    (170127) Liu Y, Zhang P. On the global well-posedness of 3-D axi-symmetric Navier-Stokes system with small swirl component[J]. arXiv preprint arXiv:1702.06279, 2017. (已打印)

     

    (170126) 单调函数的不连续点集是可数集.

     

    (170125) 设 $f$ 在 $(a,b)$ 上单增, 试证: 对 $forall xin (a,b)$, $$ex f(x-0)=sup_{y<x}f(y),quad f(x+0)=inf_{y>x}f(y) eex$$ 存在.

     

    (170124) 好了歌: 世人都晓神仙好, 惟有功名忘不了! 古今将相在何方? 荒冢一堆草没了. 世人都晓神仙好, 只有金银忘不了! 终朝只恨聚无多, 及到多时眼闭了. 世人都晓神仙好, 只有娇妻忘不了! 君生日日说恩情, 君死又随人去了. 世人都晓神仙好, 只有儿孙忘不了! 痴心父母古来多, 孝顺儿孙谁见了? (曹雪芹《红楼梦》)

     

    (170123) 会意:家 $ o$ 冢. 注意这一点的位置.

     

    (170122) 他年我若为青帝, 报与桃花一处开. (黄巢)

     

    (170121) 直道相思了无益, 未妨惆怅是清狂. (李商隐)

     

    (170120) 桃李春风一杯酒, 江湖夜雨十年灯. (黄庭坚)

     

    (170119) 春风绿江岸, 万里快行船. 大江流日夜, 奔梦天地宽. (坤宁)

     

    (170118) Chen, Qionglei; Miao, Changxing. Existence theorem and blow-up criterion of the strong solutions to the two-fluid MHD equation in $Bbb R^3$. J. Differential Equations 239 (2007), no. 1, 251--271. (已打印)

     

    (170117) Tran, Chuong V.; Yu, Xinwei. Note on Prodi-Serrin-Ladyzhenskaya type regularity criteria for the Navier-Stokes equations. J. Math. Phys. 58 (2017), no. 1, 011501, 10 pp. (已打印)

     

    (170116) Ru, Shaolei; Chen, Jiecheng. Global solution of the 3D incompressible Navier–Stokes equations in the Besov spaces $dot{R}_{r_1,r_2,r_3}^{sigma,1}$. Z. Angew. Math. Phys. 68 (2017), no. 2, 68:30. (已打印)

     

    (170115) 已知 $A$ 为三阶实正交矩阵, $det A=1$. 试证: 存在正交矩阵 $P$, 使得 $$ex P^tAP=sexm{ 1&0&0\ 0&cos t&-sin t\ 0&sin t&cos t }, eex$$ 其中 $$ex cos t=frac{a_{11}+a_{22}+a_{33}-1}{2}. eex$$

     

    (170114) Fan, Jishan; Ahmad, Bashir; Hayat, Tasawar; Zhou, Yong. On blow-up criteria for a new Hall-MHD system. Appl. Math. Comput. 274 (2016), 20--24.

     

    (170113) Zhou, Yong. Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain. Math. Ann. 328 (2004), no. 1-2, 173--192.

     

    (170112) Caffarelli, L.; Kohn, R.; Nirenberg, L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), no. 6, 771--831.

     

    (170111) Stein, E. M. Note on singular integrals. Proc. Amer. Math. Soc. 8 (1957), 250--254.

     

    (170110) 设 $f(x),g(x)$ 分别是 $m$ 次和 $n$ 次多项式, 其中 $m>0,n>0$. 证明: (1) 存在次数低于 $n$ 的多项式 $u(x)$ 与次数低于 $m$ 的多项式 $v(x)$ 使得 $u(x)f(x)+v(x)g(x)=res(f(x),g(x))$; (2) $(f(x),g(x))=1$ 当且仅当 $res(f(x),g(x)) eq 0$. 这里, 对任意的多项式 $$ex f(x)=a_nx^n+a_{n-1}x^{n-1}+cdots+a_1x+a_0, eex$$ $$ex g(x)=b_mx^m+b_{m-1}x^{m-1}+cdots+b_1x+b_0, eex$$ 我们定义 $f(x),g(x)$ 的结式 $res(f(x),g(x))$ 为由两多项式系数形成的 Sylvester 矩阵 $A$ 的行列式, 其中 ($f$ 的系数有 $m$ 行, $g$ 的系数有 $n$ 行) $$ex A=sexm{ a_n&a_{n-1}&cdots&a_1&a_0&&\ &ddots&ddots&ddots&ddots&ddots&\ &&a_n&a_{n-1}&cdots&a_1&a_0\ b_m&b_{m-1}&cdots&b_1&b_0&&&\ &ddots&ddots&ddots&ddots&ddots&&\ &&b_m&b_{m-1}&cdots&b_1&b_0 }, eex$$

     

    (170109) Zhou, Yong. Weighted regularity criteria for the three-dimensional Navier-Stokes equations. Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 3, 661--671.

     

    (170108) 设 $$ex lim_{x o 0}f(x)=0,quad lim_{x o 0}f{f(2x)-f(x)}{x}=0. eex$$ 试证: $$ex lim_{x o 0}f{f(x)}{x}=0. eex$$

     

    (170107) 设 $al>0$, 试证: $dps{vlmp{x}f{ln x}{x^al}=0}$.

     

    (170106) 设 $f:(-a,a)s sed{0} o (0,+infty)$ 满足 $$ex lim_{x o 0}sez{f(x)+f{1}{f(x)}}=2. eex$$ 试证: $dps{lim_{x o 0}f(x)=1}$.

     

    (170105) 设 $A,B$ 是 $m imes n$ 阶实矩阵, 满足 $A^tB+B^tA=0$. 试证: $$ex (A+B)geq maxsed{ (A), (B)}. eex$$

     

    (170104) 设 $A,B$ 是 $n$ 阶实半正定矩阵, 试证: $$ex (A+B)= sex{Aatop B}= (A,B). eex$$

     

    (170103) 设 $A$ 是 $m imes n$ 阶实矩阵, 试证: $$ex (A)= (A^tA)= (AA^t). eex$$

     

    (170102) 设 $A$ 是数域 $bF$ 上的 $n$ 阶反对称矩阵, $al$ 是 $n$ 维列向量. 若 $n$ 是偶数, 试证: $$ex |A+xal al^t|=|A|. eex$$

     

    (170101) 设 $A$ 是数域 $bF$ 上的 $n$ 阶反对称矩阵. 若 $n$ 是奇数, 试证: $|A|=0$.

  • 相关阅读:
    SQL Server存储过程(二)
    WPF 小知识 (设置背景图)
    关于SQL Server中索引使用及维护简介
    学习asp.net比较完整的流程(转)
    web开发常用默认端口
    接口和类的几大区别
    WEB建站规划之建站目的
    个人经验:页面无刷新传输数据的多种方法总结
    旅游电子商务探讨
    vs2008中文版提供下载(包含中文msdn)
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/6538099.html
Copyright © 2020-2023  润新知