• tensorflow(三十二):解决过拟合——加惩罚项(让W接近0)


    一、减少过拟合

    奥卡姆剃刀原理:没必要的东西尽量少用。

    因此过拟合有以下几种:

    (1)更多数据

    (2)限制网络复杂性:使用浅层网络、新数据集使用大网络后加惩罚。

    (3)droupout

    (4)数据增强

    (5)用验证数据早停。

     二、损失函数加惩罚

    1、原始

    2、加惩罚项以后

     

     三、加惩罚项方法

    1、keras方法

     2、手动写

     四、实战

    import  tensorflow as tf
    from    tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
    
    
    def preprocess(x, y):
    
        x = tf.cast(x, dtype=tf.float32) / 255.
        y = tf.cast(y, dtype=tf.int32)
    
        return x,y
    
    
    batchsz = 128
    (x, y), (x_val, y_val) = datasets.mnist.load_data()
    print('datasets:', x.shape, y.shape, x.min(), x.max())
    
    
    
    db = tf.data.Dataset.from_tensor_slices((x,y))
    db = db.map(preprocess).shuffle(60000).batch(batchsz).repeat(10)
    
    ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
    ds_val = ds_val.map(preprocess).batch(batchsz) 
    
    
    
    
    network = Sequential([layers.Dense(256, activation='relu'),
                         layers.Dense(128, activation='relu'),
                         layers.Dense(64, activation='relu'),
                         layers.Dense(32, activation='relu'),
                         layers.Dense(10)])
    network.build(input_shape=(None, 28*28))
    network.summary()
    
    optimizer = optimizers.Adam(lr=0.01)
    
    
    
    for step, (x,y) in enumerate(db):
    
        with tf.GradientTape() as tape:
            # [b, 28, 28] => [b, 784]
            x = tf.reshape(x, (-1, 28*28))
            # [b, 784] => [b, 10]
            out = network(x)
            # [b] => [b, 10]
            y_onehot = tf.one_hot(y, depth=10) 
            # [b]
            loss = tf.reduce_mean(tf.losses.categorical_crossentropy(y_onehot, out, from_logits=True))
    
    
            loss_regularization = []
            for p in network.trainable_variables:
                loss_regularization.append(tf.nn.l2_loss(p))
            loss_regularization = tf.reduce_sum(tf.stack(loss_regularization))
    
            loss = loss + 0.0001 * loss_regularization
     
    
        grads = tape.gradient(loss, network.trainable_variables)
        optimizer.apply_gradients(zip(grads, network.trainable_variables))
    
    
        if step % 100 == 0:
    
            print(step, 'loss:', float(loss), 'loss_regularization:', float(loss_regularization)) 
    
    
        # evaluate
        if step % 500 == 0:
            total, total_correct = 0., 0
    
            for step, (x, y) in enumerate(ds_val): 
                # [b, 28, 28] => [b, 784]
                x = tf.reshape(x, (-1, 28*28))
                # [b, 784] => [b, 10]
                out = network(x) 
                # [b, 10] => [b] 
                pred = tf.argmax(out, axis=1) 
                pred = tf.cast(pred, dtype=tf.int32)
                # bool type 
                correct = tf.equal(pred, y)
                # bool tensor => int tensor => numpy
                total_correct += tf.reduce_sum(tf.cast(correct, dtype=tf.int32)).numpy()
                total += x.shape[0]
    
            print(step, 'Evaluate Acc:', total_correct/total)
  • 相关阅读:
    Android SQLite 简单使用演示样例
    经常使用排序算法实现[交换排序之冒泡排序、高速排序]
    Spring In Action读书笔记
    Linux 经常使用快捷键
    Android组件系列----ContentProvider内容提供者【1】
    Android Stuido 好卡怎么办?不要急,兄弟来教你
    【我们都爱Paul Hegarty】斯坦福IOS8公开课个人笔记3 Xcode、Auto Layout及MVC
    JAVA学习第四十五课 — 其它对象API(一)System、Runtime、Math类
    hdu 5073 Galaxy
    从设计稿到demo
  • 原文地址:https://www.cnblogs.com/zhangxianrong/p/14719583.html
Copyright © 2020-2023  润新知