Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 257953 Accepted Submission(s): 61290
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
Author
Ignatius.L
随着i不断更新maxsum的值,如果为负数,加上下一个数不论这个数是正负,和值必定比这个数下,所以置前负值为0.若全为负数,则只需保留当前最大的负数即可。
#include <iostream> using namespace std; int main() { int j,i,k,n,m,t; int a[100002]; scanf("%d",&t); for (j=1;j<=t;j++) { scanf("%d",&n); for (i=0;i<n;i++) { scanf("%d",&a[i]); } int sum=0,maxsum=-1001,first =0, last = 0, temp = 1; for (i=0;i<n;i++) { sum += a[i]; if (sum > maxsum) { maxsum = sum;first = temp;last = i+1; } if (sum < 0) { sum = 0;temp = i+2; } } printf("Case %d: %d %d %d ",j,maxsum,first,last); if (j!=t) { printf(" "); } } return 0; }