• 基于opencv的车牌提取项目


    初学图像处理,做了一个车牌提取项目,本博客仅仅是为了记录一下学习过程,该项目只具备初级功能,还有待改善

    第一部分:车牌倾斜矫正

    # 导入所需模块
    import cv2
    import math
    from matplotlib import pyplot as plt
    
    # 显示图片
    def cv_show(name,img):
        cv2.imshow(name,img)
        cv2.waitKey()
        cv2.destroyAllWindows()
    
    # 调整图片大小
    def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
        dim = None
        (h, w) = image.shape[:2]
        if width is None and height is None:
            return image
        if width is None:
            r = height / float(h)
            dim = (int(w * r), height)
        else:
            r = width / float(w)
            dim = (width, int(h * r))
        resized = cv2.resize(image, dim, interpolation=inter)
        return resized
    
    # 加载图片
    origin_Image = cv2.imread("./images/car_09.jpg")
    rawImage = resize(origin_Image,height=500)
    
    # 高斯去噪
    image = cv2.GaussianBlur(rawImage, (3, 3), 0)
    # 灰度处理
    gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    # sobel算子边缘检测(做了一个y方向的检测)
    Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
    absX = cv2.convertScaleAbs(Sobel_x)  # 转回uint8
    image = absX
    # 自适应阈值处理
    ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
    # 闭运算,是白色部分练成整体
    kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (14, 5))
    image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
    # 去除一些小的白点
    kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 1))
    kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 19))
    # 膨胀,腐蚀
    image = cv2.dilate(image, kernelX)
    image = cv2.erode(image, kernelX)
    # 腐蚀,膨胀
    image = cv2.erode(image, kernelY)
    image = cv2.dilate(image, kernelY)
    # 中值滤波去除噪点
    image = cv2.medianBlur(image, 15)
    # 轮廓检测
    # cv2.RETR_EXTERNAL表示只检测外轮廓
    # cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
    thresh_, contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    # 绘制轮廓
    image1 = rawImage.copy()
    cv2.drawContours(image1, contours, -1, (0, 255, 0), 5)
    cv_show('image1',image1)
    
    # 筛选出车牌位置的轮廓
    # 这里我只做了一个车牌的长宽比在3:1到4:1之间这样一个判断
    for i,item in enumerate(contours): # enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中
        # cv2.boundingRect用一个最小的矩形,把找到的形状包起来
        rect = cv2.boundingRect(item)
        x = rect[0]
        y = rect[1]
        weight = rect[2]
        height = rect[3]
        if (weight > (height * 1.5)) and (weight < (height * 4)) and height>50:
            index = i
            image2 = rawImage.copy()
            cv2.drawContours(image2, contours, index, (0, 0, 255), 3)
            cv_show('image2',image2)
    # 参数:
    #  https://blog.csdn.net/lovetaozibaby/article/details/99482973
    # InputArray Points: 待拟合的直线的集合,必须是矩阵形式;
    # distType: 距离类型。fitline为距离最小化函数,拟合直线时,要使输入点到拟合直线的距离和最小化。这里的 距离的类型有以下几种:
    # cv2.DIST_USER : User defined distance
    # cv2.DIST_L1: distance = |x1-x2| + |y1-y2|
    # cv2.DIST_L2: 欧式距离,此时与最小二乘法相同
    # cv2.DIST_C:distance = max(|x1-x2|,|y1-y2|)
    # cv2.DIST_L12:L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
    # cv2.DIST_FAIR:distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
    # cv2.DIST_WELSCH: distance = c2/2(1-exp(-(x/c)2)), c = 2.9846
    # cv2.DIST_HUBER:distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
    # param: 距离参数,跟所选的距离类型有关,值可以设置为0。
    #
    # reps, aeps: 第5/6个参数用于表示拟合直线所需要的径向和角度精度,通常情况下两个值均被设定为1e-2.
    # output :
    #
    # 对于二维直线,输出output为4维,前两维代表拟合出的直线的方向,后两位代表直线上的一点。(即通常说的点斜式直线)
    # 其中(vx, vy) 是直线的方向向量,(x, y) 是直线上的一个点。
    # 斜率k = vy / vx
    # 截距b = y - k * x
    
    # 直线拟合找斜率
    cnt = contours[index]
    image3 = rawImage.copy()
    h, w = image3.shape[:2]
    [vx, vy, x, y] = cv2.fitLine(cnt, cv2.DIST_L2, 0, 0.01, 0.01)
    k = vy/vx
    b = y-k*x
    lefty = b
    righty = k*w+b
    img = cv2.line(image3, (w, righty), (0, lefty), (0, 255, 0), 2)
    cv_show('img',img)
    
    a = math.atan(k)
    a = math.degrees(a)
    image4 = origin_Image.copy()
    # 图像旋转
    h,w = image4.shape[:2]
    print(h,w)
    #第一个参数旋转中心,第二个参数旋转角度,第三个参数:缩放比例
    M = cv2.getRotationMatrix2D((w/2,h/2),a,1)
    #第三个参数:变换后的图像大小
    dst = cv2.warpAffine(image4,M,(int(w*1),int(h*1)))
    cv_show('dst',dst)
    cv2.imwrite('car_09.jpg',dst)

    第二部分:车牌号码提取

     1 # 导入所需模块
     2 import cv2
     3 from matplotlib import pyplot as plt
     4 import os
     5 import numpy as np
     6 
     7 # 显示图片
     8 def cv_show(name,img):
     9     cv2.imshow(name,img)
    10     cv2.waitKey()
    11     cv2.destroyAllWindows()
    12 
    13 def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
    14     dim = None
    15     (h, w) = image.shape[:2]
    16     if width is None and height is None:
    17         return image
    18     if width is None:
    19         r = height / float(h)
    20         dim = (int(w * r), height)
    21     else:
    22         r = width / float(w)
    23         dim = (width, int(h * r))
    24     resized = cv2.resize(image, dim, interpolation=inter)
    25     return resized
    26 
    27 #读取待检测图片
    28 origin_image = cv2.imread('./car_09.jpg')
    29 resize_image = resize(origin_image,height=600)
    30 ratio = origin_image.shape[0]/600
    31 print(ratio)
    32 cv_show('resize_image',resize_image)
    33 
    34 
    35 #高斯滤波,灰度化
    36 image = cv2.GaussianBlur(resize_image, (3, 3), 0)
    37 gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    38 cv_show('gray_image',gray_image)
    39 
    40 #梯度化
    41 Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
    42 absX = cv2.convertScaleAbs(Sobel_x)
    43 image = absX
    44 cv_show('image',image)
    45 
    46 #闭操作
    47 ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
    48 kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 1))
    49 image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX, iterations=2)
    50 cv_show('image',image)
    51 kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 1))
    52 kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1))
    53 image = cv2.dilate(image, kernelX)
    54 image = cv2.erode(image, kernelX)
    55 image = cv2.erode(image, kernelY)
    56 image = cv2.dilate(image, kernelY)
    57 image = cv2.medianBlur(image, 9)
    58 cv_show('image',image)
    59 
    60 #绘制轮廓
    61 thresh, contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    62 print(type(contours))
    63 print(len(contours))
    64 
    65 cur_img = resize_image.copy()
    66 cv2.drawContours(cur_img,contours,-1,(0,0,255),3)
    67 cv_show('img',cur_img)
    68 
    69 for item in contours:
    70     rect = cv2.boundingRect(item)
    71     x = rect[0]
    72     y = rect[1]
    73     weight = rect[2]
    74     height = rect[3]
    75     if (weight > (height * 2.5)) and (weight < (height * 4)):
    76         if height > 40 and height < 80:
    77             image = origin_image[int(y*ratio): int((y + height)*ratio), int(x*ratio) : int((x + weight)*ratio)]
    78 cv_show('image',image)
    79 cv2.imwrite('chepai_09.jpg',image)

    第三部分:车牌号码分割:

     1 # 导入所需模块
     2 import cv2
     3 from matplotlib import pyplot as plt
     4 import os
     5 import numpy as np
     6 
     7 # 显示图片
     8 def cv_show(name,img):
     9     cv2.imshow(name,img)
    10     cv2.waitKey()
    11     cv2.destroyAllWindows()
    12 
    13 #车牌灰度化
    14 chepai_image = cv2.imread('chepai_09.jpg')
    15 image = cv2.GaussianBlur(chepai_image, (3, 3), 0)
    16 gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    17 cv_show('gray_image',gray_image)
    18 
    19 ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
    20 cv_show('image',image)
    21 
    22 #计算二值图像黑白点的个数,处理绿牌照问题,让车牌号码始终为白色
    23 area_white = 0
    24 area_black = 0
    25 height, width = image.shape
    26 for i in range(height):
    27     for j in range(width):
    28         if image[i, j] == 255:
    29             area_white += 1
    30         else:
    31             area_black += 1
    32 print(area_black,area_white)
    33 if area_white > area_black:
    34     ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY_INV)
    35     cv_show('image',image)
    36 
    37 #绘制轮廓
    38 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 5))
    39 image = cv2.dilate(image, kernel)
    40 cv_show('image', image)
    41 thresh, contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    42 cur_img = chepai_image.copy()
    43 cv2.drawContours(cur_img,contours,-1,(0,0,255),3)
    44 cv_show('img',cur_img)
    45 words = []
    46 word_images = []
    47 print(len(contours))
    48 for item in contours:
    49     word = []
    50     rect = cv2.boundingRect(item)
    51     x = rect[0]
    52     y = rect[1]
    53     weight = rect[2]
    54     height = rect[3]
    55     word.append(x)
    56     word.append(y)
    57     word.append(weight)
    58     word.append(height)
    59     words.append(word)
    60 words = sorted(words, key=lambda s:s[0], reverse=False)
    61 print(words)
    62 i = 0
    63 for word in words:
    64     if (word[3] > (word[2] * 1)) and (word[3] < (word[2] * 5)):
    65         i = i + 1
    66         splite_image = chepai_image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
    67         word_images.append(splite_image)
    68 
    69 for i, j in enumerate(word_images):
    70     cv_show('word_images[i]',word_images[i])
    71     cv2.imwrite("./chepai_09/0{}.png".format(i),word_images[i])
    View Code

    第四部分:字符匹配:

      1 # 导入所需模块
      2 import cv2
      3 from matplotlib import pyplot as plt
      4 import os
      5 import numpy as np
      6 
      7 # 准备模板
      8 template = ['0','1','2','3','4','5','6','7','8','9',
      9             'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
     10             '','','','','','','','','','','','','','','','','','','',
     11             '','','','','','','','','','','','']
     12 
     13 # 显示图片
     14 def cv_show(name,img):
     15     cv2.imshow(name,img)
     16     cv2.waitKey()
     17     cv2.destroyAllWindows()
     18 
     19 # 读取一个文件夹下的所有图片,输入参数是文件名,返回文件地址列表
     20 def read_directory(directory_name):
     21     referImg_list = []
     22     for filename in os.listdir(directory_name):
     23         referImg_list.append(directory_name + "/" + filename)
     24     return referImg_list
     25 
     26 # 中文模板列表(只匹配车牌的第一个字符)
     27 def get_chinese_words_list():
     28     chinese_words_list = []
     29     for i in range(34,64):
     30         c_word = read_directory('./refer1/'+ template[i])
     31         chinese_words_list.append(c_word)
     32     return chinese_words_list
     33 
     34 #英文模板列表(只匹配车牌的第二个字符)
     35 def get_english_words_list():
     36     eng_words_list = []
     37     for i in range(10,34):
     38         e_word = read_directory('./refer1/'+ template[i])
     39         eng_words_list.append(e_word)
     40     return eng_words_list
     41 
     42 # 英文数字模板列表(匹配车牌后面的字符)
     43 def get_eng_num_words_list():
     44     eng_num_words_list = []
     45     for i in range(0,34):
     46         word = read_directory('./refer1/'+ template[i])
     47         eng_num_words_list.append(word)
     48     return eng_num_words_list
     49 
     50 #模版匹配
     51 def template_matching(words_list):
     52     if words_list == 'chinese_words_list':
     53         template_words_list = chinese_words_list
     54         first_num = 34
     55     elif words_list == 'english_words_list':
     56         template_words_list = english_words_list
     57         first_num = 10
     58     else:
     59         template_words_list = eng_num_words_list
     60         first_num = 0
     61     best_score = []
     62     for template_word in template_words_list:
     63         score = []
     64         for word in template_word:
     65             template_img = cv2.imdecode(np.fromfile(word, dtype=np.uint8), 1)
     66             template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
     67             ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
     68             height, width = template_img.shape
     69             image = image_.copy()
     70             image = cv2.resize(image, (width, height))
     71             result = cv2.matchTemplate(image, template_img, cv2.TM_CCOEFF)
     72             score.append(result[0][0])
     73         best_score.append(max(score))
     74     return template[first_num + best_score.index(max(best_score))]
     75 
     76 referImg_list = read_directory("chepai_13")
     77 chinese_words_list = get_chinese_words_list()
     78 english_words_list = get_english_words_list()
     79 eng_num_words_list = get_eng_num_words_list()
     80 chepai_num = []
     81 
     82 #匹配第一个汉字
     83 img = cv2.imread(referImg_list[0])
     84 # 高斯去噪
     85 image = cv2.GaussianBlur(img, (3, 3), 0)
     86 # 灰度处理
     87 gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
     88 # 自适应阈值处理
     89 ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
     90 #第一个汉字匹配
     91 chepai_num.append(template_matching('chinese_words_list'))
     92 print(chepai_num[0])
     93 
     94 #匹配第二个英文字母
     95 img = cv2.imread(referImg_list[1])
     96 # 高斯去噪
     97 image = cv2.GaussianBlur(img, (3, 3), 0)
     98 # 灰度处理
     99 gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    100 # 自适应阈值处理
    101 ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
    102 #第二个英文字母匹配
    103 chepai_num.append(template_matching('english_words_list'))
    104 print(chepai_num[1])
    105 
    106 #匹配其余5个字母,数字
    107 for i in range(2,7):
    108     img = cv2.imread(referImg_list[i])
    109     # 高斯去噪
    110     image = cv2.GaussianBlur(img, (3, 3), 0)
    111     # 灰度处理
    112     gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    113     # 自适应阈值处理
    114     ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
    115     #其余字母匹配
    116     chepai_num.append(template_matching('eng_num_words_list'))
    117     print(chepai_num[i])
    118 print(chepai_num)
    View Code
  • 相关阅读:
    cpp:博文_注意
    Algs4-1.2(非习题)String
    Algs4-1.2(非习题)几何对象中的一个2D用例
    Algs4-1.2.19字符串解析
    Algs4-1.2.18累加器的方差
    Algs4-1.2.17有理数实现的健壮性
    Algs4-1.2.16有理数
    Algs4-1.2.15基于String的split()的方法实现In中的静态方法readInts()
    Algs4-1.2.13实现Transaction类型
    Algs4-1.2.14实现Transaction中的equals()方法
  • 原文地址:https://www.cnblogs.com/zhangguoxv/p/13203977.html
Copyright © 2020-2023  润新知