• 剑指offer-面试题37:序列化二叉树及二叉树的基本操作和测试


    面试题37:序列化二叉树:即将一棵二叉树转换为字符串,反序列化二叉树即把序列化为二叉树的字符串转换为二叉树。
    思想:采用二叉树的前序遍历方法来对二叉树进行序列化
    具体代码如下:
       //序列化二叉树
    public String SerializeBinaryTree(TreeNode root)
    {
    StringBuilder sb = new StringBuilder();
    if(root == null)
    {
    sb.append("$,");
    return sb.toString();
    }
    else {
    sb.append(root.value+",");
    //System.out.print(root.value+",");
    sb.append(SerializeBinaryTree(root.getLeftNode()));
    sb.append(SerializeBinaryTree(root.getRightNode()));
    }
    return sb.toString();
    }
    //二叉树的反序列化
    public TreeNode Deserialize(String str)
    {
    index++;
    String[] DLRseq= str.split(",");
    TreeNode node = null;
    if(!DLRseq[index].equals("$"))
    {
    node = new TreeNode(Integer.parseInt(DLRseq[index]));
    node.leftNode = Deserialize(str);
    node.rightNode = Deserialize(str);
    }
    return node;
    }
    面试题7:重建二叉树
    题目:输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入放入前序遍历和中序遍历的结果中都不含重复的数字。例如,输入前序遍历{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建如图所示的二叉树:


    思路:通过前序遍历可以知道根节点,然后通过该根节点在中序遍历的序列中获取二叉树的左子树和右子树。
    代码如下:
    //重建二叉树
    public TreeNode reConstructBinaryTree(int[] pre, int[] in)
    {
    if(pre == null || in == null|| pre.length<0||in.length<0||pre.length!=in.length)
    {
    throw new RuntimeException("数组不符合规范");
    }
    return construc(pre, in,0,pre.length-1,0,in.length-1);
    }
    public TreeNode construc(int[] pre, int[] in,int pStart, int pEnd, int iStart, int iEnd)
    {
    TreeNode root = new TreeNode(pre[pStart]);
    if(pStart == pEnd&&iStart == iEnd)
    {
    if(pre[pStart] != in[iStart])
    {
    throw new RuntimeException("数组不符合规范");
    }
    return root;
    }
    int index = iStart;
    while(root.value != in[index] && index <= iEnd)
    {
    index++;
    }
    if(index>iEnd)
    {
    throw new RuntimeException("数组不符合规范");
    }
    int leftLeng = index-iStart;
    if(leftLeng > 0)
    {
    root.leftNode = construc(pre,in,pStart+1,pStart+leftLeng,iStart,index-1);
    }
    if(leftLeng< iEnd-iStart)
    {
    root.rightNode = construc(pre,in,pStart+leftLeng+1,pEnd,index+1,iEnd);
    }
    return root;
    }


    //以下代码包含了有关二叉树的基本操作,包括:遍历、查找、判断是否为满二叉树等等
    package com.zc.algorithm;
    import java.util.Queue;
    import java.util.Stack;
    import java.util.LinkedList;

    public class SerializeAndDeserializeBinaryTree {
    int index = -1;//定义一个全局变量,在反序列化中使用
    //树节点
    public class TreeNode
    {
    int value;
    TreeNode leftNode;
    TreeNode rightNode;
    public TreeNode(int value)
    {
    this.value = value;
    }
    //设置左节点
    public void setLeftNode(TreeNode leftNode)
    {
    this.leftNode = leftNode;
    }
    //获取左节点
    public TreeNode getLeftNode()
    {
    return leftNode;
    }
    //设置右节点
    public void setRightNode(TreeNode rightNode)
    {
    this.rightNode = rightNode;
    }
    //获取右节点
    public TreeNode getRightNode()
    {
    return rightNode;
    }
    //前序遍历:递归的方法
    public void preOrderByRecursion()
    {
    System.out.print(this.value + " ");
    //遍历左节点
    if(this.leftNode != null)
    {
    this.leftNode.preOrderByRecursion();
    }
    //遍历右节点
    if( this.rightNode != null)
    {
    this.rightNode.preOrderByRecursion();
    }
    }
    //前序遍历:非递归,采用栈的方式,思路:首先左节点入栈,当没有左节点后,每个左节点依次出栈,并判断出栈的左节点是否有右孩子
    public void preOrderByStack(TreeNode root)
    {
    //定义一个栈
    Stack<TreeNode> stack = new Stack<TreeNode>();
    while(true)
    {
    while(root != null)
    {
    //打印节点的值
    System.out.print(root.value + " ");
    //将节点入栈
    stack.push(root);
    //获取当前节点的左节点
    root = root.getLeftNode();
    }
    if(stack.isEmpty()) break;
    //当所有的左节点遍历完毕,将左节点出栈
    root = stack.pop();
    //获取当前节点的右节点
    root = root.getRightNode();
    }
    }
    //中序遍历:递归方式
    public void middleOrderByRecursion()
    {
    if(this.leftNode != null)
    {
    this.middleOrderByRecursion();
    }
    System.out.print(this.value);
    if(this.rightNode != null)
    {
    this.middleOrderByRecursion();
    }
    }
    //中序遍历:采用栈的方式
    public void middleOrderByStack(TreeNode root)
    {
    Stack<TreeNode> stack = new Stack<TreeNode>();
    while(true)
    {
    while(root != null)
    {
    stack.push(root);
    root = root.getLeftNode();
    }
    if(stack.isEmpty()) break;
    root = stack.pop();
    System.out.print(root.value+",");
    root = root.getRightNode();
    }
    }
    //后序遍历:递归方式
    public void afterOrderByRecursion()
    {
    if(this.leftNode!=null)
    {
    this.afterOrderByRecursion();
    }
    if(this.rightNode != null)
    {
    this.afterOrderByRecursion();
    }
    System.out.print(this.value+" ");
    }
    //后序遍历:栈的方式
    public void afterOrderByStack(TreeNode root)
    {
    }
    //层序遍历
    public void levelOrder(TreeNode root)
    {
    TreeNode temp = null;
    Queue<TreeNode> queue = new LinkedList<TreeNode>();
    queue.offer(root);
    while (!queue.isEmpty())
    {
    temp = queue.poll();
    System.out.print(temp.value+" ");
    if(temp.getLeftNode()!=null)
    {
    queue.offer(temp.getLeftNode());
    }
    if(temp.rightNode !=null)
    {
    queue.offer(temp.getRightNode());
    }
    }
    }

    //判断一棵树是否是完全二叉树(层次遍历的变形)
    public boolean isCompleteBinaryTree(TreeNode root) {
    TreeNode node = root;
    Queue<TreeNode> queue = new LinkedList<TreeNode>();
    queue.offer(root);
    while (!queue.isEmpty())
    {
    TreeNode pre = queue.poll();
    if(pre == null)
    {
    break;
    }
    queue.offer(pre.leftNode);
    queue.offer(pre.rightNode);
    }
    while(!queue.isEmpty())
    {
    TreeNode cur = queue.poll();
    if(cur != null)
    {
    return false;
    }
    }
    return true;
    }


    }
    //二叉树
    public class BinaryTree
    {
    TreeNode root;
    int counts = 0;
    //设置根节点
    public void setRoot(TreeNode root)
    {
    this.root = root;
    }
    //获取根节点
    public TreeNode getRoot() {
    return this.root;
    }
    //前序遍历:递归方式
    public void preOrderByRecursion()
    {
    root.preOrderByRecursion();
    }
    //前序遍历:栈方式
    public void preOrderByStack(TreeNode root)
    {
    root.preOrderByStack(root);
    }
    //中序遍历:递归方式
    public void middleOrderByRecursion()
    {
    root.middleOrderByRecursion();
    }
    //中序遍历:栈方式
    public void middleOrderByStack(TreeNode root)
    {
    root.preOrderByStack(root);
    }
    //后序遍历:递归方式
    public void afterOrderByRecursion()
    {
    root.afterOrderByRecursion();
    }
    //层序遍历
    public void levelOrderByQueue(TreeNode root)
    {
    root.levelOrder(root);
    }
    //获取二叉树的高度
    public int getHeight()
    {
    TreeNode cur = this.root;
    int height = 0;
    while(cur!=null)
    {
    cur = cur.leftNode;
    height++;
    }
    return height;
    }
    //求叶子节点数:递归方式
    public void getCountsOfLeaf(TreeNode root)
    {
    if(root == null)
    {
    return ;
    }
    if(root.leftNode == null || root.rightNode==null)
    {
    counts++;
    }
    this.getCountsOfLeaf(root.leftNode);
    this.getCountsOfLeaf(root.rightNode);
    }
    //求叶子节点数:非递归方式
    public int getCountsOfLeafByRecursion(TreeNode root)
    {

    int counts = 0;
    if(root == null)
    {
    return counts;
    }
    Stack<TreeNode> stack = new Stack<TreeNode>();
    TreeNode node = null;
    stack.push(root);
    while(!stack.isEmpty())
    {
    node = stack.pop();
    if(node.leftNode == null && node.rightNode==null)
    {
    counts++;
    }
    if(node.leftNode != null)
    {
    stack.push(node.leftNode);
    }
    if(node.rightNode!=null)
    {
    stack.push(node.rightNode);
    }
    }
    return counts;
    }
    //查找某个节点
    public TreeNode findNode(TreeNode root, int k)
    {
    if(root == null)
    {
    return null;
    }
    else if(root.value == k)
    {
    return root;
    }
    TreeNode leftNode = findNode(root.leftNode,k);
    if(leftNode != null)
    {
    return leftNode;
    }
    TreeNode rightNode = findNode(root.rightNode,k);
    if(rightNode != null)
    {
    return rightNode;
    }
    return null;
    }
    //获取K层的所有节点值
    public int getNodeNumber(TreeNode root ,int k)
    {
    if(k==1)
    {
    if(root == null)
    {
    return 0;
    }
    System.out.println(root.value);
    return 1;
    }
    return getNodeNumber(root.leftNode,k-1)+ getNodeNumber(root.rightNode,k-1);
    }
    //返回某节点的父节点
    public TreeNode getParent(TreeNode root, int x)
    {
    if(root == null)
    {
    return null;
    }
    TreeNode leftNode = root.leftNode;
    TreeNode rightNode = root.rightNode;
    if(leftNode!=null && leftNode.value == x)
    {
    return root;
    }
    if(rightNode!=null&& rightNode.value == x)
    {
    return root;
    }
    TreeNode leftParent = getParent(root.leftNode,x);
    if(leftParent!=null)
    {
    return leftParent;
    }
    TreeNode rightParent = getParent(root.rightNode,x);
    if(rightParent != null)
    {
    return rightParent;
    }
    return null;
    }


    }

    //序列化二叉树
    public String SerializeBinaryTree(TreeNode root)
    {
    StringBuilder sb = new StringBuilder();
    if(root == null)
    {
    sb.append("$,");
    return sb.toString();
    }
    else {
    sb.append(root.value+",");
    //System.out.print(root.value+",");
    sb.append(SerializeBinaryTree(root.getLeftNode()));
    sb.append(SerializeBinaryTree(root.getRightNode()));
    }
    return sb.toString();
    }
    //二叉树的反序列化
    public TreeNode Deserialize(String str)
    {
    index++;
    String[] DLRseq= str.split(",");
    TreeNode node = null;
    if(!DLRseq[index].equals("$"))
    {
    node = new TreeNode(Integer.parseInt(DLRseq[index]));
    node.leftNode = Deserialize(str);
    node.rightNode = Deserialize(str);
    }
    return node;
    }

    public static void main(String[] args)
    {
    SerializeAndDeserializeBinaryTree sdTree = new SerializeAndDeserializeBinaryTree();
    //创建一颗树
    BinaryTree binTree = sdTree.new BinaryTree();
    //创建根节点
    TreeNode root = sdTree.new TreeNode(1);
    //把根节点赋值给树
    binTree.setRoot(root);
    //设置左节点
    TreeNode leftNode = sdTree.new TreeNode(2);
    root.setLeftNode(leftNode);
    //设置右节点
    TreeNode rightNode = sdTree.new TreeNode(3);
    root.setRightNode(rightNode);
    //设置第二层的左右节点
    leftNode.setLeftNode(sdTree.new TreeNode(4));

    leftNode.setRightNode(sdTree.new TreeNode(5));
    rightNode.setLeftNode(sdTree.new TreeNode(6));
    rightNode.setRightNode(sdTree.new TreeNode(7));
    binTree.preOrderByRecursion();
    System.out.println();
    // String str = "1,2,4,$,$,5,$,$,3,6,$,$,7,$,$";
    System.out.println("序列化二叉树");
    String result = sdTree.SerializeBinaryTree(root);
    System.out.println("序列后的结果:" + result);
    System.out.println("================");
    System.out.println("反序列化二叉树,打印的结果为:");
    binTree.preOrderByStack(sdTree.Deserialize(result));
    System.out.println();
    System.out.println("树的高度为:");
    System.out.println(binTree.getHeight());
    System.out.println("树的叶子节点数为:");
    binTree.getCountsOfLeaf(root);
    System.out.println(binTree.counts);
    System.out.println("采用栈的方式获取树的叶子节点数");
    System.out.println(binTree.getCountsOfLeafByRecursion(root));
    System.out.println("寻找某个节点");
    int k = 5;
    TreeNode node = binTree.findNode(root,k);
    System.out.println(node.value);
    }

    }
  • 相关阅读:
    CentOS 6.3 下编译Nginx(笔记整理)
    XMPP协议相关基础概念(Strophe学习笔记)
    StackMapTable format error
    hibernate的子查询
    strophe与openfire模拟的XMPP简单hello程序
    Strophe.Status的所有值
    博客园添加SyntaxHighlighter
    P5395 【模板】第二类斯特林数·行
    test20191001
    test20190829
  • 原文地址:https://www.cnblogs.com/zhangchuan1001/p/10766914.html
Copyright © 2020-2023  润新知