• OpenCV && C++ 07


    Code

    /*
    作者:郑大峰
    时间:2019年09月20日
    环境:OpenCV 4.1.1 + VS2017
    内容:Histogram Equalization of a Color image with OpenCV
    */
    
    #include "pch.h"
    #include <iostream>
    #include <opencv2/opencv.hpp>
    
    using namespace std;
    using namespace cv;
    
    int main()
    {
    	Mat image = imread("15484.jpg");
    
    	if (image.empty())
    	{
    		cout << "Could not open or find the image" << endl;
    		cin.get();
    		return -1;
    	}
    
    	//Convert the image from BGR to YCrCb color space
    	Mat hist_equalized_image;
    	cvtColor(image, hist_equalized_image, COLOR_BGR2YCrCb);
    
    	//Split the image into 3 channels; Y, Cr and Cb channels respectively and store it in a std::vector
    	vector<Mat> vec_channels;
    	split(hist_equalized_image, vec_channels);
    
    	//Equalize the histogram of only the Y channel 
    	equalizeHist(vec_channels[0], vec_channels[0]);
    
    	//Merge 3 channels in the vector to form the color image in YCrCB color space.
    	merge(vec_channels, hist_equalized_image);
    
    	//Convert the histogram equalized image from YCrCb to BGR color space again
    	cvtColor(hist_equalized_image, hist_equalized_image, COLOR_YCrCb2BGR);
    
    	//Define the names of windows
    	String windowNameOfOriginalImage = "Original Image";
    	String windowNameOfHistogramEqualized = "Histogram Equalized Color Image";
    
    	// Create windows with the above names
    	namedWindow(windowNameOfOriginalImage, WINDOW_NORMAL);
    	namedWindow(windowNameOfHistogramEqualized, WINDOW_NORMAL);
    
    	// Show images inside the created windows.
    	imshow(windowNameOfOriginalImage, image);
    	imshow(windowNameOfHistogramEqualized, hist_equalized_image);
    
    	waitKey(0); // Wait for any key stroke
    
    	destroyAllWindows(); //destroy all open windows
    
    	return 0;
    }
    

    Result

    从这个图片中,我们可以发现,原始图像在经过直方图均衡化之后,左侧偏暗的部分,稍稍变亮了,右侧偏亮的部分,稍稍变暗了。这就是直方图均衡化的作用了。

    Explanation

    //Convert the image from BGR to YCrCb color space
    Mat hist_equalized_image;
    cvtColor(image, hist_equalized_image, COLOR_BGR2YCrCb);
    

    我们加载的图像是 BGR 颜色空间的,因为在该颜色空间下三个通道(蓝、绿、红)都存储了颜色信息,所以我们不能对他们进行直方图均衡化,否则会改变颜色。我们可以将图片的颜色空间改成 YCrCb ,在这个颜色空间下,Y 通道只存储灰度信息,而 Cr 和 Cb 通道存储颜色信息,所以我们可以仅对 Y 通道进行直方图均衡化,再转换成 BGR 颜色空间。

  • 相关阅读:
    STM32—LAN8720学习
    STM32F4以太网MAC接口
    分治思想应用题
    网易笔试编程题
    python正则表达式
    【论文笔记】CenterNet: Keypoint Triplets for Object Detection
    【论文笔记】Guided Anchor:Region Proposal by Guided Anchoring
    【论文笔记】SNIP:An Analysis of Scale Invariance in Object Detection
    【论文笔记】FCOS:Fully Convolutional One-Stage Object Detection
    【论文笔记】CenterNet:Objects as Points
  • 原文地址:https://www.cnblogs.com/zdfffg/p/11558430.html
Copyright © 2020-2023  润新知