• HDU 1317 XYZZY


    题目链接:https://vjudge.net/problem/HDU-1317

    题目大意

      有 N 个房间,每个房间都有一定能量(有正有负),其中某些房间单向可达,你现在开局自带 100 能量,想从 1 号房间走到 N 号房间,并且要保证中途剩余能量恒为正,问是否可能?

    分析

      我一开始不知道题目中“quits in frustration”是什么意思,后来我才知道,这句话的意思是不一定有路能到达 N。(说清楚一点会死么。。。)
      本来就是个判断有没有正环的题目,现在还要判断正环上的点能否到达 N,不能的话这个正环就没什么卵用。
      可以先用 Floyd 先求任意两点的可达性,然后用 SPFA 判断有无能到达 N 的正环,没有再判断 N 上的值是否为正。
      PS:此题数据并不强,我的第一版代码 AC 了,但后来我自己弄了个数据,本地 WA 了,最终搞了第二版代码,本地和 OJ 都 AC 了。

    代码如下

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3  
      4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
      5 #define Rep(i,n) for (int i = 0; i < (int)(n); ++i)
      6 #define For(i,s,t) for (int i = (int)(s); i <= (int)(t); ++i)
      7 #define rFor(i,t,s) for (int i = (int)(t); i >= (int)(s); --i)
      8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
      9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
     10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
     11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
     12  
     13 #define pr(x) cout << #x << " = " << x << "  "
     14 #define prln(x) cout << #x << " = " << x << endl
     15  
     16 #define LOWBIT(x) ((x)&(-x))
     17  
     18 #define ALL(x) x.begin(),x.end()
     19 #define INS(x) inserter(x,x.begin())
     20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
     21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c 
     22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
     23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper);
     24  
     25 #define ms0(a) memset(a,0,sizeof(a))
     26 #define msI(a) memset(a,0x3f,sizeof(a))
     27 #define msM(a) memset(a,-1,sizeof(a))
     28 
     29 #define MP make_pair
     30 #define PB push_back
     31 #define ft first
     32 #define sd second
     33  
     34 template<typename T1, typename T2>
     35 istream &operator>>(istream &in, pair<T1, T2> &p) {
     36     in >> p.first >> p.second;
     37     return in;
     38 }
     39  
     40 template<typename T>
     41 istream &operator>>(istream &in, vector<T> &v) {
     42     for (auto &x: v)
     43         in >> x;
     44     return in;
     45 }
     46 
     47 template<typename T>
     48 ostream &operator<<(ostream &out, vector<T> &v) {
     49     Rep(i, v.size()) out << v[i] << " 
    "[i == v.size()];
     50     return out;
     51 }
     52  
     53 template<typename T1, typename T2>
     54 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
     55     out << "[" << p.first << ", " << p.second << "]" << "
    ";
     56     return out;
     57 }
     58 
     59 inline int gc(){
     60     static const int BUF = 1e7;
     61     static char buf[BUF], *bg = buf + BUF, *ed = bg;
     62     
     63     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
     64     return *bg++;
     65 } 
     66 
     67 inline int ri(){
     68     int x = 0, f = 1, c = gc();
     69     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
     70     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
     71     return x*f;
     72 }
     73 
     74 template<class T>
     75 inline string toString(T x) {
     76     ostringstream sout;
     77     sout << x;
     78     return sout.str();
     79 }
     80 
     81 inline int toInt(string s) {
     82     int v;
     83     istringstream sin(s);
     84     sin >> v;
     85     return v;
     86 }
     87 
     88 //min <= aim <= max
     89 template<typename T>
     90 inline bool BETWEEN(const T aim, const T min, const T max) {
     91     return min <= aim && aim <= max;
     92 }
     93  
     94 typedef long long LL;
     95 typedef unsigned long long uLL;
     96 typedef vector< int > VI;
     97 typedef vector< bool > VB;
     98 typedef vector< char > VC;
     99 typedef vector< double > VD;
    100 typedef vector< string > VS;
    101 typedef vector< LL > VL;
    102 typedef vector< VI > VVI;
    103 typedef vector< VB > VVB;
    104 typedef vector< VS > VVS;
    105 typedef vector< VL > VVL;
    106 typedef vector< VVI > VVVI;
    107 typedef vector< VVL > VVVL;
    108 typedef pair< int, int > PII;
    109 typedef pair< LL, LL > PLL;
    110 typedef pair< int, string > PIS;
    111 typedef pair< string, int > PSI;
    112 typedef pair< string, string > PSS;
    113 typedef pair< double, double > PDD;
    114 typedef vector< PII > VPII;
    115 typedef vector< PLL > VPLL;
    116 typedef vector< VPII > VVPII;
    117 typedef vector< VPLL > VVPLL;
    118 typedef vector< VS > VVS;
    119 typedef map< int, int > MII;
    120 typedef unordered_map< int, int > uMII;
    121 typedef map< LL, LL > MLL;
    122 typedef map< string, int > MSI;
    123 typedef map< int, string > MIS;
    124 typedef set< int > SI;
    125 typedef stack< int > SKI;
    126 typedef queue< int > QI;
    127 typedef priority_queue< int > PQIMax;
    128 typedef priority_queue< int, VI, greater< int > > PQIMin;
    129 const double EPS = 1e-8;
    130 const LL inf = 0x7fffffff;
    131 const LL infLL = 0x7fffffffffffffffLL;
    132 const LL mod = 1e9 + 7;
    133 const int maxN = 1e2 + 7;
    134 const LL ONE = 1;
    135 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
    136 const LL oddBits = 0x5555555555555555;
    137 
    138 struct Edge{
    139     int from, to;
    140 };
    141 
    142 istream& operator>> (istream& in, Edge &x) {
    143     in >> x.from >> x.to;
    144     return in;
    145 }
    146 
    147 struct Vertex{
    148     int value, w;
    149     VI next;
    150     
    151     void clear() {
    152         value = 0;
    153         next.clear();
    154     }
    155 };
    156 
    157 int T, N, M;
    158 Vertex V[maxN];
    159 vector< Edge > E;
    160 bool reach[maxN][maxN];
    161 
    162 void addEdge(Edge &x) {
    163     V[x.from].next.PB(E.size());
    164     E.PB(x);
    165 }
    166 
    167 void init() {
    168     For(i, 1, N) V[i].clear();
    169     E.clear();
    170     ms0(reach);
    171 }
    172 
    173 bool vis[maxN]; // 标记是否在队列里 
    174 int cnt[maxN]; // 记录一个顶点的入队次数 
    175 bool SPFA(int S) {
    176     QI Q;
    177     
    178     ms0(vis);
    179     ms0(cnt);
    180     Q.push(S);
    181     vis[S] = 1;
    182     ++cnt[S];
    183     
    184     while(!Q.empty()) {
    185         int tmp = Q.front(); Q.pop();
    186         vis[tmp] = 0;
    187         
    188         Rep(i, V[tmp].next.size()) {
    189             Edge &e = E[V[tmp].next[i]];
    190             if(!reach[e.to][N]) continue; // 只松弛能到达 N 的点 
    191             
    192             if(V[e.to].value < V[e.from].value + V[e.to].w) { // 松弛 
    193                 V[e.to].value = V[e.from].value + V[e.to].w; 
    194                 if(!vis[e.to]) { // 一旦一个节点被更新,它就要入队,以保证它的后继节点被更新 
    195                     if(++cnt[e.to] >= N) return true; // 一旦一个节点被更新 N 次以上,就说明有正环并且可以达到  
    196                     Q.push(e.to);
    197                     vis[e.to] = 1; 
    198                 }
    199             }
    200         }
    201     }
    202     return V[N].value > 0;
    203 }
    204 
    205 void Floyd() {
    206     For(k, 1, N) {
    207         reach[k][k] = true;
    208         For(i, 1, N) {
    209             if(!reach[i][k]) continue;
    210             For(j, 1, N) {
    211                 if(!reach[k][j]) continue;
    212                 reach[i][j] = true;
    213             }
    214         }
    215     }
    216 }
    217 
    218 int main(){
    219     //freopen("MyOutput.txt","w",stdout);
    220     //freopen("input.txt","r",stdin);
    221     INIT();
    222     while(cin >> N && N != -1) {
    223         init();
    224         For(i, 1, N) {
    225             int m;
    226             Edge t;
    227             t.from = i;
    228             
    229             cin >> V[i].w >> m;
    230             For(i, 1, m) {
    231                 cin >> t.to;
    232                 addEdge(t);
    233                 reach[t.from][t.to] = true;
    234             }
    235         }
    236         
    237         Floyd();
    238         
    239         V[1].value = 100;
    240         if(reach[1][N] && SPFA(1)) cout << "winnable
    ";
    241         else cout << "hopeless
    ";
    242     }
    243     return 0;
    244 }
    245 
    246 /*
    247 7
    248 0 1 2
    249 -80 2 3 6
    250 -10 1 4
    251 20 1 5
    252 10 1 3
    253 -100 1 7
    254 0 0
    255 hopeless
    256 
    257 7
    258 0 1 2
    259 -80 2 3 6
    260 -10 1 4
    261 20 1 5
    262 10 1 3
    263 -10 1 7
    264 0 0
    265 winnable
    266 
    267 9
    268 0 1 2
    269 -80 2 3 6
    270 -10 1 4
    271 20 1 5
    272 10 1 3
    273 -10 2 7 9
    274 10 1 8
    275 10 1 6
    276 0 0
    277 winnable
    278 */
    View Code
  • 相关阅读:
    eureka流程图
    Feign和Ribbon的重试机制
    idea编译kafka 2.6 源码
    Feign的调用流程
    FeignClientFactoryBean创建动态代理
    Feign源码的入口
    Ribbon的检查服务
    Ribbon是怎么和Eureka整合的?
    Eureka过期
    backup: sqlHelper --cSharp
  • 原文地址:https://www.cnblogs.com/zaq19970105/p/11323415.html
Copyright © 2020-2023  润新知