题目链接:https://vjudge.net/problem/HDU-1317
题目大意
有 N 个房间,每个房间都有一定能量(有正有负),其中某些房间单向可达,你现在开局自带 100 能量,想从 1 号房间走到 N 号房间,并且要保证中途剩余能量恒为正,问是否可能?
分析
我一开始不知道题目中“quits in frustration”是什么意思,后来我才知道,这句话的意思是不一定有路能到达 N。(说清楚一点会死么。。。)
本来就是个判断有没有正环的题目,现在还要判断正环上的点能否到达 N,不能的话这个正环就没什么卵用。
可以先用 Floyd 先求任意两点的可达性,然后用 SPFA 判断有无能到达 N 的正环,没有再判断 N 上的值是否为正。
PS:此题数据并不强,我的第一版代码 AC 了,但后来我自己弄了个数据,本地 WA 了,最终搞了第二版代码,本地和 OJ 都 AC 了。
代码如下
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 5 #define Rep(i,n) for (int i = 0; i < (int)(n); ++i) 6 #define For(i,s,t) for (int i = (int)(s); i <= (int)(t); ++i) 7 #define rFor(i,t,s) for (int i = (int)(t); i >= (int)(s); --i) 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 12 13 #define pr(x) cout << #x << " = " << x << " " 14 #define prln(x) cout << #x << " = " << x << endl 15 16 #define LOWBIT(x) ((x)&(-x)) 17 18 #define ALL(x) x.begin(),x.end() 19 #define INS(x) inserter(x,x.begin()) 20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end()) 21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c 22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower); 23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper); 24 25 #define ms0(a) memset(a,0,sizeof(a)) 26 #define msI(a) memset(a,0x3f,sizeof(a)) 27 #define msM(a) memset(a,-1,sizeof(a)) 28 29 #define MP make_pair 30 #define PB push_back 31 #define ft first 32 #define sd second 33 34 template<typename T1, typename T2> 35 istream &operator>>(istream &in, pair<T1, T2> &p) { 36 in >> p.first >> p.second; 37 return in; 38 } 39 40 template<typename T> 41 istream &operator>>(istream &in, vector<T> &v) { 42 for (auto &x: v) 43 in >> x; 44 return in; 45 } 46 47 template<typename T> 48 ostream &operator<<(ostream &out, vector<T> &v) { 49 Rep(i, v.size()) out << v[i] << " "[i == v.size()]; 50 return out; 51 } 52 53 template<typename T1, typename T2> 54 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 55 out << "[" << p.first << ", " << p.second << "]" << " "; 56 return out; 57 } 58 59 inline int gc(){ 60 static const int BUF = 1e7; 61 static char buf[BUF], *bg = buf + BUF, *ed = bg; 62 63 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 64 return *bg++; 65 } 66 67 inline int ri(){ 68 int x = 0, f = 1, c = gc(); 69 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 70 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 71 return x*f; 72 } 73 74 template<class T> 75 inline string toString(T x) { 76 ostringstream sout; 77 sout << x; 78 return sout.str(); 79 } 80 81 inline int toInt(string s) { 82 int v; 83 istringstream sin(s); 84 sin >> v; 85 return v; 86 } 87 88 //min <= aim <= max 89 template<typename T> 90 inline bool BETWEEN(const T aim, const T min, const T max) { 91 return min <= aim && aim <= max; 92 } 93 94 typedef long long LL; 95 typedef unsigned long long uLL; 96 typedef vector< int > VI; 97 typedef vector< bool > VB; 98 typedef vector< char > VC; 99 typedef vector< double > VD; 100 typedef vector< string > VS; 101 typedef vector< LL > VL; 102 typedef vector< VI > VVI; 103 typedef vector< VB > VVB; 104 typedef vector< VS > VVS; 105 typedef vector< VL > VVL; 106 typedef vector< VVI > VVVI; 107 typedef vector< VVL > VVVL; 108 typedef pair< int, int > PII; 109 typedef pair< LL, LL > PLL; 110 typedef pair< int, string > PIS; 111 typedef pair< string, int > PSI; 112 typedef pair< string, string > PSS; 113 typedef pair< double, double > PDD; 114 typedef vector< PII > VPII; 115 typedef vector< PLL > VPLL; 116 typedef vector< VPII > VVPII; 117 typedef vector< VPLL > VVPLL; 118 typedef vector< VS > VVS; 119 typedef map< int, int > MII; 120 typedef unordered_map< int, int > uMII; 121 typedef map< LL, LL > MLL; 122 typedef map< string, int > MSI; 123 typedef map< int, string > MIS; 124 typedef set< int > SI; 125 typedef stack< int > SKI; 126 typedef queue< int > QI; 127 typedef priority_queue< int > PQIMax; 128 typedef priority_queue< int, VI, greater< int > > PQIMin; 129 const double EPS = 1e-8; 130 const LL inf = 0x7fffffff; 131 const LL infLL = 0x7fffffffffffffffLL; 132 const LL mod = 1e9 + 7; 133 const int maxN = 1e2 + 7; 134 const LL ONE = 1; 135 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 136 const LL oddBits = 0x5555555555555555; 137 138 struct Edge{ 139 int from, to; 140 }; 141 142 istream& operator>> (istream& in, Edge &x) { 143 in >> x.from >> x.to; 144 return in; 145 } 146 147 struct Vertex{ 148 int value, w; 149 VI next; 150 151 void clear() { 152 value = 0; 153 next.clear(); 154 } 155 }; 156 157 int T, N, M; 158 Vertex V[maxN]; 159 vector< Edge > E; 160 bool reach[maxN][maxN]; 161 162 void addEdge(Edge &x) { 163 V[x.from].next.PB(E.size()); 164 E.PB(x); 165 } 166 167 void init() { 168 For(i, 1, N) V[i].clear(); 169 E.clear(); 170 ms0(reach); 171 } 172 173 bool vis[maxN]; // 标记是否在队列里 174 int cnt[maxN]; // 记录一个顶点的入队次数 175 bool SPFA(int S) { 176 QI Q; 177 178 ms0(vis); 179 ms0(cnt); 180 Q.push(S); 181 vis[S] = 1; 182 ++cnt[S]; 183 184 while(!Q.empty()) { 185 int tmp = Q.front(); Q.pop(); 186 vis[tmp] = 0; 187 188 Rep(i, V[tmp].next.size()) { 189 Edge &e = E[V[tmp].next[i]]; 190 if(!reach[e.to][N]) continue; // 只松弛能到达 N 的点 191 192 if(V[e.to].value < V[e.from].value + V[e.to].w) { // 松弛 193 V[e.to].value = V[e.from].value + V[e.to].w; 194 if(!vis[e.to]) { // 一旦一个节点被更新,它就要入队,以保证它的后继节点被更新 195 if(++cnt[e.to] >= N) return true; // 一旦一个节点被更新 N 次以上,就说明有正环并且可以达到 196 Q.push(e.to); 197 vis[e.to] = 1; 198 } 199 } 200 } 201 } 202 return V[N].value > 0; 203 } 204 205 void Floyd() { 206 For(k, 1, N) { 207 reach[k][k] = true; 208 For(i, 1, N) { 209 if(!reach[i][k]) continue; 210 For(j, 1, N) { 211 if(!reach[k][j]) continue; 212 reach[i][j] = true; 213 } 214 } 215 } 216 } 217 218 int main(){ 219 //freopen("MyOutput.txt","w",stdout); 220 //freopen("input.txt","r",stdin); 221 INIT(); 222 while(cin >> N && N != -1) { 223 init(); 224 For(i, 1, N) { 225 int m; 226 Edge t; 227 t.from = i; 228 229 cin >> V[i].w >> m; 230 For(i, 1, m) { 231 cin >> t.to; 232 addEdge(t); 233 reach[t.from][t.to] = true; 234 } 235 } 236 237 Floyd(); 238 239 V[1].value = 100; 240 if(reach[1][N] && SPFA(1)) cout << "winnable "; 241 else cout << "hopeless "; 242 } 243 return 0; 244 } 245 246 /* 247 7 248 0 1 2 249 -80 2 3 6 250 -10 1 4 251 20 1 5 252 10 1 3 253 -100 1 7 254 0 0 255 hopeless 256 257 7 258 0 1 2 259 -80 2 3 6 260 -10 1 4 261 20 1 5 262 10 1 3 263 -10 1 7 264 0 0 265 winnable 266 267 9 268 0 1 2 269 -80 2 3 6 270 -10 1 4 271 20 1 5 272 10 1 3 273 -10 2 7 9 274 10 1 8 275 10 1 6 276 0 0 277 winnable 278 */