• opencv行人检测里遇到的setSVMDetector()问题


    参考了博客http://blog.csdn.net/carson2005/article/details/7841443 后,自己动手后发现了一些问题,博客里提到的一些问题没有解决

    ,是关于为什么图像的HOG特征向量debug后是15876的问题。答案是因为原作者的窗口是64*64的,所以维数为9*4*7*7=1764(图像的大小也是64*64,所以图像的特征维数与一个窗口的维数是相同的,compute()里的窗口步进(8,8)也是无效的)。而我的图像时64*128大小的,我把窗口也换成

    64*128,所以维数就是3780了,与setSVMDetector默认的getDefaultPeopleDetector大小一样(大概小于getDefaultPeopleDetector()大小为(3781*1))的vector传到setSVMDetector()里都没关系吧,不会出现断言错误。

    上代码:

      1 /*
      2  * =====================================================================================
      3  *
      4  *       Filename:  people_detector.cpp
      5  *      Environment:    
      6  *    Description:  行人检测程序,程序里窗口大小和图片大小一样大,都是64*128
      7  *
      8  *
      9  *
     10  *        Version:  1.0
     11  *        Created:  2013/10/20 10:45:02
     12  *         Author:  yuliyang
     13 I*
     14  *             Mail:  wzyuliyang911@gmail.com
     15  *             Blog:  http://www.cnblogs.com/yuliyang
     16  *
     17  * =====================================================================================
     18  */
     19 
     20 #include "opencv2/opencv.hpp"
     21 #include "windows.h"
     22 #include "fstream"
     23 #include <iostream>
     24 using namespace std;
     25 using namespace cv;
     26 class Mysvm: public CvSVM
     27 {
     28 public:
     29     int get_alpha_count()
     30     {
     31         return this->sv_total;
     32     }
     33 
     34     int get_sv_dim()
     35     {
     36         return this->var_all;
     37     }
     38 
     39     int get_sv_count()
     40     {
     41         return this->decision_func->sv_count;
     42     }
     43 
     44     double* get_alpha()
     45     {
     46         return this->decision_func->alpha;
     47     }
     48 
     49     float** get_sv()
     50     {
     51         return this->sv;
     52     }
     53 
     54     float get_rho()
     55     {
     56         return this->decision_func->rho;
     57     }
     58 };
     59 
     60 int my_train()
     61 {
     62 
     63     /*-----------------------------------------------------------------------------
     64      *  e:/pedestrianDetect-peopleFlow.txt是用来保存所有样本的特征,大小为样本数*3780(每个样本的特征数)
     65      *
     66      *
     67      *
     68      *
     69      *-----------------------------------------------------------------------------*/
     70     char classifierSavePath[256] = "e:/pedestrianDetect-peopleFlow.txt";
     71     string buf;
     72     vector<string> pos_img_path;
     73     vector<string> neg_img_path;
     74     ifstream svm_pos_data("pos.txt");           /* 批处理程序生成 */
     75     ifstream svm_neg_data("neg.txt");           /* 批处理生成 */
     76     while( svm_pos_data )//将训练样本文件依次读取进来    
     77     {    
     78         if( getline( svm_pos_data, buf ) )
     79             pos_img_path.push_back( buf );
     80 
     81     }
     82     while( svm_neg_data )//将训练样本文件依次读取进来    
     83     {    
     84         if( getline( svm_neg_data, buf ) )
     85             neg_img_path.push_back( buf );
     86 
     87     }
     88     cout<<pos_img_path.size()<<"个正样本"<<endl;
     89     cout<<neg_img_path.size()<<"个负样本"<<endl;
     90     int totalSampleCount=pos_img_path.size()+neg_img_path.size();
     91     CvMat *sampleFeaturesMat = cvCreateMat(totalSampleCount , 3780, CV_32FC1);
     92     //64*128窗口大小的训练样本,该矩阵将是totalSample*3780
     93     //64*64的窗口大小的训练样本,该矩阵将是totalSample*1764
     94     cvSetZero(sampleFeaturesMat);  
     95     CvMat *sampleLabelMat = cvCreateMat(totalSampleCount, 1, CV_32FC1);//样本标识  
     96     cvSetZero(sampleLabelMat);  
     97 
     98     cout<<"************************************************************"<<endl;
     99     cout<<"start to training positive samples..."<<endl;
    100 
    101     
    102     
    103     for(int i=0; i<pos_img_path.size(); i++)  
    104     {  
    105         cv::Mat img = cv::imread(pos_img_path.at(i));
    106     
    107         if( img.data == NULL )
    108         {
    109             cout<<"positive image sample load error: "<<i<<endl;
    110             system("pause");
    111             continue;
    112         }
    113 
    114         cv::HOGDescriptor hog(cv::Size(64,128), cv::Size(16,16), cv::Size(8,8), cv::Size(8,8), 9);
    115         vector<float> featureVec; 
    116 
    117         hog.compute(img, featureVec, cv::Size(8,8));  
    118         unsigned int featureVecSize = featureVec.size();
    119 
    120         for (int j=0; j<featureVecSize; j++)  
    121         {          
    122             CV_MAT_ELEM( *sampleFeaturesMat, float, i, j ) = featureVec[j]; 
    123         }  
    124         sampleLabelMat->data.fl[i] = 1;
    125     }
    126     cout<<"end of training for positive samples..."<<endl;
    127 
    128     cout<<"*********************************************************"<<endl;
    129     cout<<"start to train negative samples..."<<endl;
    130     
    131     for (int i=0; i<neg_img_path.size(); i++)
    132     {  
    133         
    134         cv::Mat img = cv::imread(neg_img_path.at(i));
    135         if(img.data == NULL)
    136         {
    137             cout<<"negative image sample load error: "<<endl;
    138             continue;
    139         }
    140 
    141         cv::HOGDescriptor hog(cv::Size(64,128), cv::Size(16,16), cv::Size(8,8), cv::Size(8,8), 9);  
    142         vector<float> featureVec; 
    143 
    144         hog.compute(img,featureVec,cv::Size(8,8));//计算HOG特征
    145         int featureVecSize = featureVec.size();  
    146 
    147         for ( int j=0; j<featureVecSize; j ++)  
    148         {  
    149             CV_MAT_ELEM( *sampleFeaturesMat, float, i + pos_img_path.size(), j ) = featureVec[ j ];
    150         }  
    151 
    152         sampleLabelMat->data.fl[ i + pos_img_path.size() ] = -1;
    153     }  
    154 
    155     cout<<"end of training for negative samples..."<<endl;
    156     cout<<"********************************************************"<<endl;
    157     cout<<"start to train for SVM classifier..."<<endl;
    158 
    159     CvSVMParams params;  
    160     params.svm_type = CvSVM::C_SVC;  
    161     params.kernel_type = CvSVM::LINEAR;  
    162     params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, FLT_EPSILON);
    163     params.C = 0.01;
    164 
    165     Mysvm svm;
    166     svm.train( sampleFeaturesMat, sampleLabelMat, NULL, NULL, params ); //用SVM线性分类器训练
    167     svm.save(classifierSavePath);
    168 
    169     cvReleaseMat(&sampleFeaturesMat);
    170     cvReleaseMat(&sampleLabelMat);
    171 
    172     int supportVectorSize = svm.get_support_vector_count();
    173     cout<<"support vector size of SVM:"<<supportVectorSize<<endl;
    174     cout<<"************************ end of training for SVM ******************"<<endl;
    175 
    176     CvMat *sv,*alp,*re;//所有样本特征向量 
    177     sv  = cvCreateMat(supportVectorSize , 3780, CV_32FC1);
    178     alp = cvCreateMat(1 , supportVectorSize, CV_32FC1);
    179     re  = cvCreateMat(1 , 3780, CV_32FC1);
    180     CvMat *res  = cvCreateMat(1 , 1, CV_32FC1);
    181 
    182     cvSetZero(sv);
    183     cvSetZero(re);
    184 
    185     for(int i=0; i<supportVectorSize; i++)
    186     {
    187         memcpy( (float*)(sv->data.fl+i*3780), svm.get_support_vector(i), 3780*sizeof(float));    
    188     }
    189 
    190     double* alphaArr = svm.get_alpha();
    191     int alphaCount = svm.get_alpha_count();
    192 
    193     for(int i=0; i<supportVectorSize; i++)
    194     {
    195         alp->data.fl[i] = (float)alphaArr[i];
    196     }
    197     cvMatMul(alp, sv, re);
    198 
    199     int posCount = 0;
    200     for (int i=0; i<3780; i++)
    201     {
    202         re->data.fl[i] *= -1;
    203     }
    204 
    205     /*-----------------------------------------------------------------------------
    206      *  e:/hogSVMDetector-peopleFlow.txt文件中保存的是支持向量,共有3781个值,是一个3781*1的列向量
    207      *
    208      *
    209      *-----------------------------------------------------------------------------*/
    210     FILE* fp = fopen("e:/hogSVMDetector-peopleFlow.txt","wb");
    211     if( NULL == fp )
    212     {
    213         return 1;
    214     }
    215     for(int i=0; i<3780; i++)
    216     {
    217         fprintf(fp,"%f 
    ",re->data.fl[i]);
    218     }
    219     float rho = svm.get_rho();
    220     fprintf(fp, "%f", rho);
    221     cout<<"e:/hogSVMDetector.txt 保存完毕"<<endl;//保存HOG能识别的分类器
    222     fclose(fp);
    223 
    224     return 1;
    225 }
    226 void my_detect()
    227 {
    228     CvCapture* cap = cvCreateFileCapture("E:\test.avi");
    229     if (!cap)
    230     {
    231         cout<<"avi file load error..."<<endl;
    232         system("pause");
    233         exit(-1);
    234     }
    235 
    236     vector<float> x;
    237     ifstream fileIn("e:/hogSVMDetector-peopleFlow.txt", ios::in);
    238     float val = 0.0f;
    239     while(!fileIn.eof())
    240     {
    241         fileIn>>val;
    242         x.push_back(val);
    243     }
    244     fileIn.close();
    245 
    246     vector<cv::Rect>  found;
    247     cv::HOGDescriptor hog(cv::Size(64,128), cv::Size(16,16), cv::Size(8,8), cv::Size(8,8), 9);
    248     
    249     /*-----------------------------------------------------------------------------
    250      *
    251      *
    252      *  如果setSVMDetector出现问题的话,可能是这个原因:因为默认hog.getDefaultPeopleDetector()
    253      *  获取的检测器的大小是3781*1的列向量,所以如果生成的e:/hogSVMDetector-peopleFlow.txt里的大小不等的话
    254      *  ,读入
    255      *  就会出现错误,可能这个函数考虑了运行的速度问题,所以限制了大小为3781*1
    256      *  
    257      *  特别注意:有些童鞋可能生成的特征向量是15876(所以setSVMDetector里的列向量就是15877了与默认的大小不一,assetion就出错了)
    258      *  ,只要调整下图像的大小和检测窗口的大小,使生成的特征向量为3780就行了,怎么计算,可以参考
    259      *  网上其他博客
    260      *
    261      *-----------------------------------------------------------------------------*/
    262     hog.setSVMDetector(x);
    263 
    264     IplImage* img = NULL;
    265     cvNamedWindow("img", 0);
    266     while(img=cvQueryFrame(cap))
    267     {
    268         hog.detectMultiScale(img, found, 0, cv::Size(8,8), cv::Size(32,32), 1.05, 2);
    269         if (found.size() > 0)
    270         {
    271             for (int i=0; i<found.size(); i++)
    272             {
    273                 CvRect tempRect = cvRect(found[i].x, found[i].y, found[i].width, found[i].height);
    274 
    275                 cvRectangle(img, cvPoint(tempRect.x,tempRect.y),
    276                     cvPoint(tempRect.x+tempRect.width,tempRect.y+tempRect.height),CV_RGB(255,0,0), 2);
    277             }
    278         }
    279     }
    280     cvReleaseCapture(&cap);
    281 }
    282 
    283 int main(int argc, char** argv){
    284 
    285     //my_train();
    286     //my_detect();
    287     vector<float> x;
    288     ifstream fileIn("e:/hogSVMDetector-peopleFlow.txt", ios::in); /* 读入支持向量,没必要读入样本的向量 */
    289     float val = 0.0f;
    290     while(!fileIn.eof())
    291     {
    292         fileIn>>val;
    293         x.push_back(val);
    294     }
    295     fileIn.close();
    296 
    297     vector<Rect> found, found_filtered;
    298     cv::HOGDescriptor hog(cv::Size(64,128), cv::Size(16,16), cv::Size(8,8), cv::Size(8,8), 9);
    299     hog.setSVMDetector(x);
    300 
    301     Mat img;
    302     img=imread("1.jpg",0);
    303     hog.detectMultiScale(img, found, 0, cv::Size(8,8), cv::Size(32,32), 1.05, 2);
    304     size_t i, j;
    305     for( i = 0; i < found.size(); i++ )
    306     {
    307         Rect r = found[i];
    308         for( j = 0; j < found.size(); j++ )
    309             if( j != i && (r & found[j]) == r)
    310                 break;
    311         if( j == found.size() )
    312             found_filtered.push_back(r);
    313     }
    314     for( i = 0; i < found_filtered.size(); i++ )
    315     {
    316         Rect r = found_filtered[i];
    317         // the HOG detector returns slightly larger rectangles than the real objects.
    318         // so we slightly shrink the rectangles to get a nicer output.
    319         r.x += cvRound(r.width*0.1);
    320         r.width = cvRound(r.width*0.8);
    321         r.y += cvRound(r.height*0.07);
    322         r.height = cvRound(r.height*0.8);
    323         rectangle(img, r.tl(), r.br(), cv::Scalar(0,255,0), 3);
    324     }
    325     imshow("people detector", img);
    326     waitKey();
    327 
    328     /*cvNamedWindow("img", 0);
    329     string testimage="E:databasepicture_resize_pos
    esize000r.bmp";
    330     Mat img=cv::imread(testimage);
    331     hog.detectMultiScale(img, found, 0, cv::Size(8,8), cv::Size(32,32), 1.05, 2);
    332     if (found.size() > 0)
    333     {
    334     printf("found!");
    335     }*/
    336         
    337     return 0;
    338 
    339 }

    运行效果:

    正样本1500多个,负样本400多个,所以效果不咋地,只能呵呵了。

    再上一张效果图:(ps:运行的太慢了)

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
  • 相关阅读:
    Harbor安装 -- 企业级Registry仓库
    https原理
    第十节
    第九节
    第八节
    Spring中用到的部分设计模式
    代理模式及实现
    单例模式的实现
    索引
    第九章 集合
  • 原文地址:https://www.cnblogs.com/yuliyang/p/3378881.html
Copyright © 2020-2023  润新知