• 117. Populating Next Right Pointers in Each Node II


    题目:

    Follow up for problem "Populating Next Right Pointers in Each Node".

    What if the given tree could be any binary tree? Would your previous solution still work?

    Note:

    • You may only use constant extra space.

    For example,
    Given the following binary tree,

             1
           /  
          2    3
         /     
        4   5    7
    

    After calling your function, the tree should look like:

             1 -> NULL
           /  
          2 -> 3 -> NULL
         /     
        4-> 5 -> 7 -> NULL
    
    Hide Tags
     Tree Depth-first Search 

    链接: http://leetcode.com/problems/populating-next-right-pointers-in-each-node-ii/

    题解:

    一样是DFS。跟上题不同在于,给定输入不是完全二叉树了,所以要加入一些条件来判断是否存在一个合理的next值。并且对左节点和右节点的有效性也要验证。最后要先递归连接右节点,再connect左节点。

    Time Complexity - O(n), Space Complexity - O(1)。

    public class Solution {
        public void connect(TreeLinkNode root) {
            if(root == null)
                return;
            TreeLinkNode node = root.next;
            while(node != null){
                if(node.left != null){
                    node = node.left;
                    break;
                } else if(node.right != null){
                    node = node.right;
                    break;
                } 
                node = node.next;
            }
            
            if(root.right != null){
                root.right.next = node;
                if(root.left != null)
                    root.left.next = root.right;
            } else {
                if(root.left != null)
                    root.left.next = node;
            }
            
            connect(root.right);
            connect(root.left);
        }
    }

    Update:

    /**
     * Definition for binary tree with next pointer.
     * public class TreeLinkNode {
     *     int val;
     *     TreeLinkNode left, right, next;
     *     TreeLinkNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public void connect(TreeLinkNode root) {
            if(root == null)
                return;
            TreeLinkNode p = root.next;
            
            while(p != null) {
                if(p.left != null) {
                    p = p.left;
                    break;
                } else if (p.right != null) {
                    p = p.right;
                    break;
                }
                p = p.next;    
            }
            
            if(root.right != null) 
                root.right.next = p;
            if(root.left != null) 
                root.left.next = (root.right != null) ? root.right : p;
            
            connect(root.right);
            connect(root.left);
        }
    }

    题外话: 刚看完crimson peak,还不错。不过小小失望是本来以为是个恐怖片,观众小朋友们买好了可乐和爆米花准备挑战一下自己,结果是个离奇曲折婉转动人的凄美爱情片...我只想说,导演你太浪漫了, 我先刷两题压压惊 -______-!!

    二刷:

    依然使用了递归,并没有做到constant space。留给三刷了。

    Java:

    Time Complexity - O(n), Space Complexity - O(n)。

    /**
     * Definition for binary tree with next pointer.
     * public class TreeLinkNode {
     *     int val;
     *     TreeLinkNode left, right, next;
     *     TreeLinkNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public void connect(TreeLinkNode root) {
            if (root == null) return;
            TreeLinkNode nextNode = root.next;
            while (nextNode != null) {
                if (nextNode.left == null && nextNode.right == null) nextNode = nextNode.next;
                else break;
            }
            if (nextNode != null) nextNode = (nextNode.left != null) ? nextNode.left : nextNode.right;
            if (root.right != null) root.right.next = nextNode;
            if (root.left != null) root.left.next = (root.right != null) ? root.right : nextNode;
            connect(root.right);
            connect(root.left);
        }
    }

    iterative:

    Level order traversal。主要就是类似二叉树层序遍历。这回把顶层看作一个linkedlist,我们只需要继续连接这linkedlist中每个节点的子节点们。当顶层遍历完毕以后,下一层正好也形成了一个新的类linkedlist。我们换到下一层以后继续遍历,直到最后。

    Java:

    Time Complexity - O(n), Space Complexity - O(1)。

    /**
     * Definition for binary tree with next pointer.
     * public class TreeLinkNode {
     *     int val;
     *     TreeLinkNode left, right, next;
     *     TreeLinkNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public void connect(TreeLinkNode root) {
            TreeLinkNode curLevel = new TreeLinkNode(-1);
            TreeLinkNode newLevel = curLevel;
            while (root != null) {
                if (root.left != null) {
                    curLevel.next = root.left;
                    curLevel = curLevel.next;
                }
                if (root.right != null) {
                    curLevel.next = root.right;
                    curLevel = curLevel.next;
                }
                root = root.next;
                if (root == null) {
                    curLevel = newLevel;
                    root = newLevel.next;
                    newLevel.next = null;
                }
            }
        }
    }

    Update:

    /**
     * Definition for binary tree with next pointer.
     * public class TreeLinkNode {
     *     int val;
     *     TreeLinkNode left, right, next;
     *     TreeLinkNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public void connect(TreeLinkNode root) {
            if (root == null) return;
            TreeLinkNode curLevel = new TreeLinkNode(-1);
            TreeLinkNode newLevel = curLevel;
            while (root != null) {
                if (root.left != null) {
                    curLevel.next = root.left;
                    curLevel = curLevel.next;
                }
                if (root.right != null) {
                    curLevel.next = root.right;
                    curLevel = curLevel.next;
                }
                root = root.next;
                if (root == null) {
                    root = newLevel.next;
                    newLevel.next = null;
                    curLevel = newLevel;
                }
             }
            
        }
    }

    Reference:

    http://www.cnblogs.com/springfor/p/3889327.html

    https://leetcode.com/discuss/67291/java-solution-with-constant-space

    https://leetcode.com/discuss/60795/o-1-space-o-n-time-java-solution

    https://leetcode.com/discuss/24398/simple-solution-using-constant-space

    https://leetcode.com/discuss/65526/ac-python-o-1-space-solution-12-lines-and-easy-to-understand

    https://leetcode.com/discuss/3339/o-1-space-o-n-complexity-iterative-solution

  • 相关阅读:
    索引!
    事件event
    Erlang运行时源码分析之——线程进度机制
    Erlang 运行时中使用的读写锁解析
    经典互斥算法解析
    网格布局之grid
    注册简单表单
    前端入门之自我介绍
    Python之一后置固件yield和终结函数addfinalizer
    python中yield 与 return 区别
  • 原文地址:https://www.cnblogs.com/yrbbest/p/4437465.html
Copyright © 2020-2023  润新知