• 俄罗斯套娃


    description

    求出满足逆序对个数不大于(k)(n)的排列个数.

    solution

    挺水的一道签到题,但忘取模20pts滚粗(cdots)

    首先我们定义(f[i][j])表示(i)的排列中逆序对个数为(j-1)的数量,根据打表找规律可知,(f[i][j]=f[i-1][j]+f[i][j-1],j<=i);(f[i][j]=f[i-1][j]+f[i][j-1]-f[i-1][j-frac{(i-1)cdot (i-2)}{2}],j>i),预处理出(f[1][1]=1),于是乎,(Omicron(ncdot k))复杂度算法就此诞生.另外,为了满足空间限制,我们需要开滚动数组滚掉第一维.

    code

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<queue>
    #include<map>
    #include<set>
    #define R register
    #define next kdjadskfj
    #define debug puts("mlg")
    #define mod 10000000007
    #define Mod(x) ((x%mod+mod)%mod)
    using namespace std;
    typedef long long ll;
    typedef long double ld;
    typedef unsigned long long ull;
    inline ll read();
    inline void write(ll x);
    inline void writeln(ll x);
    inline void writesp(ll x);
    ll n,k; 
    ll f[2][3100];
    ll res=0;
    int main(){	
    	freopen("matryoshka.in","r",stdin);
    	freopen("matryoshka.out","w",stdout);
    	n=read();k=read();
    	f[1][1]=1;
    	for(R ll i=2;i<=n;i++){
    		ll r=min(k+1,((i*(i-1))>>1)+1);
    		for(R ll j=1;j<=r;j++){
    			if(j<=i) f[i&1][j]=Mod(f[(i&1)^1][j]+f[i&1][j-1]);
    			else f[i&1][j]=Mod(f[i&1][j-1]+f[(i&1)^1][j]-f[(i&1)^1][j-i]);
    		}
    	}
    	for(R ll i=1;i<=min(k+1,(((n*(n-1))>>1)+1));i++) res=Mod(res+f[n&1][i]);
    	writeln(res);
    }
    inline ll read(){ll x=0,t=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-') t=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*t;}
    inline void write(ll x){if(x<0){putchar('-');x=-x;}if(x<=9){putchar(x+'0');return;}write(x/10);putchar(x%10+'0');}
    inline void writesp(ll x){write(x);putchar(' ');}
    inline void writeln(ll x){write(x);putchar('
    ');}
    
  • 相关阅读:
    跨域处理
    intellij idea远程调试
    sring boot特性
    spring mvc与struts2的区别
    jenkins集成sonar
    hibernate笔记
    python脚本
    python 字符框
    python操作
    python环境配置
  • 原文地址:https://www.cnblogs.com/ylwtsq/p/13441152.html
Copyright © 2020-2023  润新知