• 内核分析-第六周


    刘文学+原创作品转载请注明出处 http://blog.csdn.net/wdxz6547/article/details/51051866 + 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

    本文目的, 跟踪 fork 从用户态到内核态之后返回用户态的整个流程. 最后通过
    调试验证该流程.

    进程描写叙述块

    谈论Linux 进程, 不能绕过 task_struct 数据结构. 该结构定义在
    linux/include/linux/sched.h

    因为数量代码量很庞大, 其实对此, 仅仅须要大概了解就可以. 以下仅仅列出我自己感觉实用的成员

    • volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
    • void *stack;
    • atomic_t usage;
    • unsigned int flags; /* per process flags, defined below */
    • struct sched_info sched_info
    • struct list_head tasks;
    • struct mm_struct *mm, *active_mm;
    • int exit_state;
    • int exit_code, exit_signal;
    • unsigned long atomic_flags; /* Flags needing atomic access. */
    • struct restart_block restart_block;
    • struct task_struct __rcu real_parent; / real parent process */
    • struct task_struct __rcu *parent;
    • struct list_head children; /* list of my children */
    • struct list_head sibling; /* linkage in my parent’s children list */
    • struct task_struct group_leader; / threadgroup leader */

    • struct sched_class *sched_class;

    • struct sched_entity se;
    • struct pid_link pids[PIDTYPE_MAX];
    • struct list_head thread_group;
    • struct list_head thread_node;
    • pid_t pid;
    • pid_t tgid;
    • struct sysv_sem sysvsem; //IPC
    • struct sysv_shm sysvshm;
    • struct nameidata *nameidata;
    • struct fs_struct *fs;
    • struct files_struct *files;
    • void *journal_info;
    • struct list_head tasks;
    • struct mm_struct *mm, *active_mm;
    • struct thread_struct thread;

    另一些 pstrace, numa, smp, perf_event, cgroup, 中断跟踪, 信号处理等并非眼下关注的问题.

    进程创建

    从系统调用部分, 我们已经对系统调用有了主要的了解. 因此, 这里通过对 fork
    这个系统调用的学习, 一方面加深对系统调用的理解, 一方面理解进程创建的原理.

    首先当用户通过 fork 这个系统调用创建一个新的进程的时候, 首先触发中断 0x80,
    系统由用户态跳转到内核态. 内核态首先保存现场, 依据用户态传递的系统调用号,
    这里
    查找 sys_call_table 找到 fork 相应的系统处理函数 sys_fork(实际上为
    SYSCALL_DEFINE0(fork))

    fork 的代码具体实如今这里

    首先, 调用 _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0)

    而 _do_fork 对 fork 主要实用的两个函数

    p = copy_process(clone_flags, stack_start, stack_size,
    child_tidptr, NULL, trace, tls);
    

    当 copy_process 运行成功:
    1. pid = get_task_pid(p, PIDTYPE_PID); 获取进程 pid
    2. wake_up_new_task(p);

    至此, 系统调用 fork 返回. 其余部分与系统參照系统调用部分. 以下着重分析
    copy_process 和 wake_up_new_task

    copy_process

    http://code.woboq.org/linux/linux/kernel/fork.c.html#copy_process
    
    static struct task_struct *copy_process(unsigned long clone_flags,
                        unsigned long stack_start,
                        unsigned long stack_size,
                        int __user *child_tidptr,
                        struct pid *pid,
                        int trace,
                        unsigned long tls)
    {
        int retval;
        struct task_struct *p;
        //调用 security_hook_heads.task_create 中每个元素 P 的 P->hook.task_create(clone_flags)
        retval = security_task_create(clone_flags);
        if (retval)
            goto fork_out;
        retval = -ENOMEM;
        //为新的进程分配内核空间, 新进程分配内核堆栈. 之后将 current 拷贝给
        //新创建进程 p, 设置相关属性. 并返回 p. 至此, 新进程的空间及内容已经
        //就绪.
        p = dup_task_struct(current);
        if (!p)
            goto fork_out;
    
        //初始化 p->pi_lock
        rt_mutex_init_task(p);
    
        retval = -EAGAIN;
        current->flags &= ~PF_NPROC_EXCEEDED;
        //为 p 分配内核空间, 并将 current->cred 拷贝给 p, 并更新 p->cred 相关成员
        retval = copy_creds(p, clone_flags);
        if (retval < 0)
            goto bad_fork_free;
        /*
         * If multiple threads are within copy_process(), then this check
         * triggers too late. This doesn't hurt, the check is only there
         * to stop root fork bombs.
         */
        retval = -EAGAIN;
        if (nr_threads >= max_threads)
            goto bad_fork_cleanup_count;
        //为 p->delays 分配内核空间并加锁
        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
    
        //以下初始化 p 相关数据成员
        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
        p->flags |= PF_FORKNOEXEC;
        INIT_LIST_HEAD(&p->children);
        INIT_LIST_HEAD(&p->sibling);
        rcu_copy_process(p);
        p->vfork_done = NULL;
        spin_lock_init(&p->alloc_lock);
        init_sigpending(&p->pending);
        p->utime = p->stime = p->gtime = 0;
        p->utimescaled = p->stimescaled = 0;
        prev_cputime_init(&p->prev_cputime);
    
    #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
        seqcount_init(&p->vtime_seqcount);
        p->vtime_snap = 0;
        p->vtime_snap_whence = VTIME_INACTIVE;
    #endif
    #if defined(SPLIT_RSS_COUNTING)
        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
    #endif
        p->default_timer_slack_ns = current->timer_slack_ns;
        //p->ioac 置零
        task_io_accounting_init(&p->ioac);
        acct_clear_integrals(p);
        posix_cpu_timers_init(p);
        p->start_time = ktime_get_ns();
        p->real_start_time = ktime_get_boot_ns();
        p->io_context = NULL;
        p->audit_context = NULL;
        threadgroup_change_begin(current);
        cgroup_fork(p);
    #ifdef CONFIG_NUMA
        p->mempolicy = mpol_dup(p->mempolicy);
        if (IS_ERR(p->mempolicy)) {
            retval = PTR_ERR(p->mempolicy);
            p->mempolicy = NULL;
            goto bad_fork_cleanup_threadgroup_lock;
        }
    #endif
    #ifdef CONFIG_CPUSETS
        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
        seqcount_init(&p->mems_allowed_seq);
    #endif
    #ifdef CONFIG_TRACE_IRQFLAGS
        p->irq_events = 0;
        p->hardirqs_enabled = 0;
        p->hardirq_enable_ip = 0;
        p->hardirq_enable_event = 0;
        p->hardirq_disable_ip = _THIS_IP_;
        p->hardirq_disable_event = 0;
        p->softirqs_enabled = 1;
        p->softirq_enable_ip = _THIS_IP_;
        p->softirq_enable_event = 0;
        p->softirq_disable_ip = 0;
        p->softirq_disable_event = 0;
        p->hardirq_context = 0;
        p->softirq_context = 0;
    #endif
        p->pagefault_disabled = 0;
    #ifdef CONFIG_LOCKDEP
        p->lockdep_depth = 0; /* no locks held yet */
        p->curr_chain_key = 0;
        p->lockdep_recursion = 0;
    #endif
    #ifdef CONFIG_DEBUG_MUTEXES
        p->blocked_on = NULL; /* not blocked yet */
    #endif
    #ifdef CONFIG_BCACHE
        p->sequential_io    = 0;
        p->sequential_io_avg    = 0;
    #endif
    
    
    
        /* Perform scheduler related setup. Assign this task to a CPU. */
        //初始化 sched, numa 相关成员, TODO
        retval = sched_fork(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_policy;
        //初始化 CONFIG_PERF_EVENTS 条件编译中的成员
        retval = perf_event_init_task(p);
        if (retval)
            goto bad_fork_cleanup_policy;
        //为成员 audit_context 分配内存并初始化, 并设置 TIF_SYSCALL_AUDIT 标志
        retval = audit_alloc(p);
        if (retval)
            goto bad_fork_cleanup_perf;
        /* copy all the process information */
        //初始化 p->sysvshm
        shm_init_task(p);
        retval = copy_semundo(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_audit;
        //拷贝父进程的 files
        retval = copy_files(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_semundo;
        //拷贝父进程的 fs
        retval = copy_fs(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_files;
        //拷贝父进程的 sighand
        retval = copy_sighand(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_fs;
    
        //拷贝父进程的 signal
        retval = copy_signal(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_sighand;
    
        //关键, 拷贝父进程的 mm, TODO 具体分析
        retval = copy_mm(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_signal;
        //创建自己的命名空间
        retval = copy_namespaces(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_mm;
        //拷贝父进程的 io_context
        retval = copy_io(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_namespaces;
        //拷贝父进程的 thread
        retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
        if (retval)
            goto bad_fork_cleanup_io;
        if (pid != &init_struct_pid) {
            pid = alloc_pid(p->nsproxy->pid_ns_for_children);
            if (IS_ERR(pid)) {
                retval = PTR_ERR(pid);
                goto bad_fork_cleanup_io;
            }
        }
        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ?

    child_tidptr : NULL; /* * Clear TID on mm_release()? */ p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; #ifdef CONFIG_BLOCK p->plug = NULL; #endif #ifdef CONFIG_FUTEX p->robust_list = NULL; #ifdef CONFIG_COMPAT p->compat_robust_list = NULL; #endif INIT_LIST_HEAD(&p->pi_state_list); p->pi_state_cache = NULL; #endif /* * sigaltstack should be cleared when sharing the same VM */ if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) p->sas_ss_sp = p->sas_ss_size = 0; /* * Syscall tracing and stepping should be turned off in the * child regardless of CLONE_PTRACE. */ user_disable_single_step(p); clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); #ifdef TIF_SYSCALL_EMU clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); #endif clear_all_latency_tracing(p); /* ok, now we should be set up.. */ p->pid = pid_nr(pid); if (clone_flags & CLONE_THREAD) { p->exit_signal = -1; p->group_leader = current->group_leader; p->tgid = current->tgid; } else { if (clone_flags & CLONE_PARENT) p->exit_signal = current->group_leader->exit_signal; else p->exit_signal = (clone_flags & CSIGNAL); p->group_leader = p; p->tgid = p->pid; } p->nr_dirtied = 0; p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); p->dirty_paused_when = 0; p->pdeath_signal = 0; INIT_LIST_HEAD(&p->thread_group); p->task_works = NULL; //兴许 TODO /* * Ensure that the cgroup subsystem policies allow the new process to be * forked. It should be noted the the new process's css_set can be changed * between here and cgroup_post_fork() if an organisation operation is in * progress. */ retval = cgroup_can_fork(p); if (retval) goto bad_fork_free_pid; /* * Make it visible to the rest of the system, but dont wake it up yet. * Need tasklist lock for parent etc handling! */ write_lock_irq(&tasklist_lock); /* CLONE_PARENT re-uses the old parent */ if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { p->real_parent = current->real_parent; p->parent_exec_id = current->parent_exec_id; } else { p->real_parent = current; p->parent_exec_id = current->self_exec_id; } spin_lock(&current->sighand->siglock); /* * Copy seccomp details explicitly here, in case they were changed * before holding sighand lock. */ copy_seccomp(p); /* * Process group and session signals need to be delivered to just the * parent before the fork or both the parent and the child after the * fork. Restart if a signal comes in before we add the new process to * it's process group. * A fatal signal pending means that current will exit, so the new * thread can't slip out of an OOM kill (or normal SIGKILL). */ recalc_sigpending(); if (signal_pending(current)) { spin_unlock(&current->sighand->siglock); write_unlock_irq(&tasklist_lock); retval = -ERESTARTNOINTR; goto bad_fork_cancel_cgroup; } if (likely(p->pid)) { ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); init_task_pid(p, PIDTYPE_PID, pid); if (thread_group_leader(p)) { init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); init_task_pid(p, PIDTYPE_SID, task_session(current)); if (is_child_reaper(pid)) { ns_of_pid(pid)->child_reaper = p; p->signal->flags |= SIGNAL_UNKILLABLE; } p->signal->leader_pid = pid; p->signal->tty = tty_kref_get(current->signal->tty); list_add_tail(&p->sibling, &p->real_parent->children); list_add_tail_rcu(&p->tasks, &init_task.tasks); attach_pid(p, PIDTYPE_PGID); attach_pid(p, PIDTYPE_SID); __this_cpu_inc(process_counts); } else { current->signal->nr_threads++; atomic_inc(&current->signal->live); atomic_inc(&current->signal->sigcnt); list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); list_add_tail_rcu(&p->thread_node, &p->signal->thread_head); } attach_pid(p, PIDTYPE_PID); nr_threads++; } total_forks++; spin_unlock(&current->sighand->siglock); syscall_tracepoint_update(p); write_unlock_irq(&tasklist_lock); proc_fork_connector(p); cgroup_post_fork(p); threadgroup_change_end(current); perf_event_fork(p); trace_task_newtask(p, clone_flags); uprobe_copy_process(p, clone_flags); return p; bad_fork_cancel_cgroup: cgroup_cancel_fork(p); bad_fork_free_pid: if (pid != &init_struct_pid) free_pid(pid); bad_fork_cleanup_io: if (p->io_context) exit_io_context(p); bad_fork_cleanup_namespaces: exit_task_namespaces(p); bad_fork_cleanup_mm: if (p->mm) mmput(p->mm); bad_fork_cleanup_signal: if (!(clone_flags & CLONE_THREAD)) free_signal_struct(p->signal); bad_fork_cleanup_sighand: __cleanup_sighand(p->sighand); bad_fork_cleanup_fs: exit_fs(p); /* blocking */ bad_fork_cleanup_files: exit_files(p); /* blocking */ bad_fork_cleanup_semundo: exit_sem(p); bad_fork_cleanup_audit: audit_free(p); bad_fork_cleanup_perf: perf_event_free_task(p); bad_fork_cleanup_policy: #ifdef CONFIG_NUMA mpol_put(p->mempolicy); bad_fork_cleanup_threadgroup_lock: #endif threadgroup_change_end(current); delayacct_tsk_free(p); bad_fork_cleanup_count: atomic_dec(&p->cred->user->processes); exit_creds(p); bad_fork_free: free_task(p); fork_out: return ERR_PTR(retval); }

    dup_task_struct 分析

    http://code.woboq.org/linux/linux/kernel/fork.c.html#dup_task_struct
    
    static struct task_struct *dup_task_struct(struct task_struct *orig)
    {
        struct task_struct *tsk;
        struct thread_info *ti;
        //对于非 NUMA 架构, 返回 -1
        int node = tsk_fork_get_node(orig);
        int err;
        //为新进程分配内核空间:
        //  kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
        //  slab_alloc_node(s, gfpflags, node, _RET_IP_);
        //
        tsk = alloc_task_struct_node(node);
        if (!tsk)
            return NULL;
        //为新进程分配线程页信息:
        //  struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP, THREAD_SIZE_ORDER);
        //  return page ? page_address(page) : NULL;
        ti = alloc_thread_info_node(tsk, node);
        if (!ti)
            goto free_tsk;
        //将 tsk 指向 org 的内存地址
        //  *tsk = *org
        err = arch_dup_task_struct(tsk, orig);
        if (err)
            goto free_ti;
        //注意这里 tsk 的 stack 是自己又一次分配的, 而不是共享.
        tsk->stack = ti;
    #ifdef CONFIG_SECCOMP
        /*
         * We must handle setting up seccomp filters once we're under
         * the sighand lock in case orig has changed between now and
         * then. Until then, filter must be NULL to avoid messing up
         * the usage counts on the error path calling free_task.
         */
        tsk->seccomp.filter = NULL;
    #endif
        //初始化 task 的栈为 origin 的栈
        //  tsk->stack = orig->stack
        //  tsk->stack->task = tsk
        setup_thread_stack(tsk, orig);
        //置零 tsk->stack->flags 中的 TIF_USER_RETURN_NOTIFY 标志
        clear_user_return_notifier(tsk);
        //置零 tsk->stack->flags 中的 TIF_NEED_RESCHED 标志
        clear_tsk_need_resched(tsk);
        //溢出检查
        //将 tsk->stack 最后一个自己设置为 STACK_END_MAGIC, 标记 stack 结束
        set_task_stack_end_magic(tsk);
    #ifdef CONFIG_CC_STACKPROTECTOR
        tsk->stack_canary = get_random_int();
    #endif
        /*
         * One for us, one for whoever does the "release_task()" (usually
         * parent)
         */
        atomic_set(&tsk->usage, 2);
    #ifdef CONFIG_BLK_DEV_IO_TRACE
        tsk->btrace_seq = 0;
    #endif
        //设置 task_struct 一些属性
        tsk->splice_pipe = NULL;
        tsk->task_frag.page = NULL;
        tsk->wake_q.next = NULL;
        account_kernel_stack(ti, 1);
        return tsk;
    free_ti:
        free_thread_info(ti);
    free_tsk:
        free_task_struct(tsk);
        return NULL;
    }

    wake_up_new_task

    /*
     * wake_up_new_task - wake up a newly created task for the first time.
     *
     * This function will do some initial scheduler statistics housekeeping
     * that must be done for every newly created context, then puts the task
     * on the runqueue and wakes it.
     */
    void wake_up_new_task(struct task_struct *p)
    {
        unsigned long flags;
        struct rq *rq;
        raw_spin_lock_irqsave(&p->pi_lock, flags);
        /* Initialize new task's runnable average */
        init_entity_runnable_average(&p->se);
    #ifdef CONFIG_SMP
        /*
         * Fork balancing, do it here and not earlier because:
         *  - cpus_allowed can change in the fork path
         *  - any previously selected cpu might disappear through hotplug
         */
        set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
    #endif
        rq = __task_rq_lock(p);
        activate_task(rq, p, 0);
        p->on_rq = TASK_ON_RQ_QUEUED;
        trace_sched_wakeup_new(p);
        check_preempt_curr(rq, p, WF_FORK);
    #ifdef CONFIG_SMP
        if (p->sched_class->task_woken) {
            /*
             * Nothing relies on rq->lock after this, so its fine to
             * drop it.
             */
            lockdep_unpin_lock(&rq->lock);
            p->sched_class->task_woken(rq, p);
            lockdep_pin_lock(&rq->lock);
        }
    #endif
        task_rq_unlock(rq, p, &flags);
    }

    附录

    task_struct 中会保留父进程信息的数据成员. 未完待续

    struct task_struct {
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
        void *stack;
        atomic_t usage;
        unsigned int flags; /* per process flags, defined below */
        unsigned int ptrace;
    #ifdef CONFIG_SMP
        struct llist_node wake_entry;
        int on_cpu;
        unsigned int wakee_flips;
        unsigned long wakee_flip_decay_ts;
        struct task_struct *last_wakee;
        int wake_cpu;
    #endif
        //prio 父进程的 normal_prio
        int prio, static_prio, normal_prio;
        unsigned int rt_priority;
        const struct sched_class *sched_class;
        //重要结构, 非克隆
        struct sched_rt_entity rt;
    #ifdef CONFIG_CGROUP_SCHED
        struct task_group *sched_task_group;
    #endif
        //重要结构, 非克隆
        struct sched_dl_entity dl;
    #ifdef CONFIG_BLK_DEV_IO_TRACE
        unsigned int btrace_seq;
    #endif
        unsigned int policy;
        int nr_cpus_allowed;
        cpumask_t cpus_allowed;
    #ifdef CONFIG_TASKS_RCU
        unsigned long rcu_tasks_nvcsw;
    #endif /* #ifdef CONFIG_TASKS_RCU */
    #ifdef CONFIG_SCHED_INFO
        struct sched_info sched_info;
    #endif
        struct list_head tasks;
    #ifdef CONFIG_SMP
        struct plist_node pushable_tasks;
        struct rb_node pushable_dl_tasks;
    #endif
        struct mm_struct *mm, *active_mm;
        /* per-thread vma caching */
        u32 vmacache_seqnum;
        struct vm_area_struct *vmacache[VMACACHE_SIZE];
    /* task state */
        int exit_state;
        int exit_code, exit_signal;
        unsigned long jobctl;   /* JOBCTL_*, siglock protected */
        /* Used for emulating ABI behavior of previous Linux versions */
        unsigned int personality;
        /* scheduler bits, serialized by scheduler locks */
        unsigned sched_reset_on_fork:1;
        unsigned sched_contributes_to_load:1;
        unsigned sched_migrated:1;
        unsigned :0; /* force alignment to the next boundary */
        /* unserialized, strictly 'current' */
        unsigned in_execve:1; /* bit to tell LSMs we're in execve */
        unsigned in_iowait:1;
    #ifdef CONFIG_MEMCG
        unsigned memcg_may_oom:1;
    #ifndef CONFIG_SLOB
        unsigned memcg_kmem_skip_account:1;
    #endif
    #endif
    #ifdef CONFIG_COMPAT_BRK
        unsigned brk_randomized:1;
    #endif
        unsigned long atomic_flags; /* Flags needing atomic access. */
        struct restart_block restart_block;
        pid_t pid;
        pid_t tgid;
    #ifdef CONFIG_CC_STACKPROTECTOR
        /* Canary value for the -fstack-protector gcc feature */
        unsigned long stack_canary;
    #endif
        /*
         * pointers to (original) parent process, youngest child, younger sibling,
         * older sibling, respectively.  (p->father can be replaced with
         * p->real_parent->pid)
         */
        struct task_struct __rcu *real_parent; /* real parent process */
        struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
        struct task_struct *group_leader;   /* threadgroup leader */
        /*
         * ptraced is the list of tasks this task is using ptrace on.
         * This includes both natural children and PTRACE_ATTACH targets.
         * p->ptrace_entry is p's link on the p->parent->ptraced list.
         */
        struct list_head ptraced;
        struct list_head ptrace_entry;
        /* PID/PID hash table linkage. */
        struct pid_link pids[PIDTYPE_MAX];
        struct list_head thread_node;
        unsigned long nvcsw, nivcsw; /* context switch counts */
    /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
        unsigned long min_flt, maj_flt;
    /* process credentials */
        const struct cred __rcu *real_cred; /* objective and real subjective task
                         * credentials (COW) */
        char comm[TASK_COMM_LEN]; /* executable name excluding path
                         - access with [gs]et_task_comm (which lock
                           it with task_lock())
                         - initialized normally by setup_new_exec */
    /* file system info */
        struct nameidata *nameidata;
    #ifdef CONFIG_SYSVIPC
    /* ipc stuff */
        struct sysv_sem sysvsem;
    #endif
    #ifdef CONFIG_DETECT_HUNG_TASK
    /* hung task detection */
        unsigned long last_switch_count;
    #endif
    /* filesystem information */
        struct fs_struct *fs;       //拷贝父进程
    /* open file information */
        struct files_struct *files; //拷贝父进程
    /* signal handlers */
        //仅拷贝父进程的 signal->rlim, oom_score_adj, oom_score_adj_min, has_child_subreaper  而不是内存.
        struct signal_struct *signal;
        struct sighand_struct *sighand; //仅拷贝父进程的 sighand->action, 而不是内存.
        sigset_t blocked, real_blocked;
        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
        unsigned long sas_ss_sp;
        size_t sas_ss_size;
    #ifdef CONFIG_AUDITSYSCALL
        kuid_t loginuid;
        unsigned int sessionid;
    #endif
        struct seccomp seccomp;
    /* Thread group tracking */
        u32 parent_exec_id;
        u32 self_exec_id;
    /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
     * mempolicy */
        struct wake_q_node wake_q;
    #ifdef CONFIG_LOCKDEP
    # define MAX_LOCK_DEPTH 48UL
        struct held_lock held_locks[MAX_LOCK_DEPTH];
        gfp_t lockdep_reclaim_gfp;
    #endif
    #ifdef CONFIG_UBSAN
        unsigned int in_ubsan;
    #endif
    /* journalling filesystem info */
        void *journal_info;
    /* stacked block device info */
        struct bio_list *bio_list;
    /* VM state */
        struct reclaim_state *reclaim_state;
        struct backing_dev_info *backing_dev_info;
        unsigned long ptrace_message;
        siginfo_t *last_siginfo; /* For ptrace use.  */
    #ifdef CONFIG_CPUSETS
        nodemask_t mems_allowed;    /* Protected by alloc_lock */
    #endif
    #endif
    #ifdef CONFIG_DEBUG_PREEMPT
        unsigned long preempt_disable_ip;
    #endif
    #ifdef CONFIG_NUMA
        short il_next;
        short pref_node_fork;
    #endif
    #ifdef CONFIG_NUMA_BALANCING
        int numa_scan_seq;
        unsigned int numa_scan_period_max;
        unsigned long numa_migrate_retry;
        struct list_head numa_entry;
        /*
         * numa_faults is an array split into four regions:
         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
         * in this precise order.
         *
         * faults_memory: Exponential decaying average of faults on a per-node
         * basis. Scheduling placement decisions are made based on these
         * counts. The values remain static for the duration of a PTE scan.
         * faults_cpu: Track the nodes the process was running on when a NUMA
         * hinting fault was incurred.
         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
         * during the current scan window. When the scan completes, the counts
         * in faults_memory and faults_cpu decay and these values are copied.
         */
        unsigned long total_numa_faults;
        /*
         * numa_faults_locality tracks if faults recorded during the last
         * scan window were remote/local or failed to migrate. The task scan
         * period is adapted based on the locality of the faults with different
         * weights depending on whether they were shared or private faults
         */
        unsigned long numa_faults_locality[3];
        unsigned long numa_pages_migrated;
    #endif /* CONFIG_NUMA_BALANCING */
    #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
        struct tlbflush_unmap_batch tlb_ubc;
    #endif
        struct rcu_head rcu;
        /*
         * cache last used pipe for splice
         */
        struct pipe_inode_info *splice_pipe;
        struct page_frag task_frag;
    #ifdef CONFIG_FAULT_INJECTION
        int make_it_fail;
    #endif
    #ifdef CONFIG_LATENCYTOP
        int latency_record_count;
        struct latency_record latency_record[LT_SAVECOUNT];
    #endif
        /*
         * time slack values; these are used to round up poll() and
         * select() etc timeout values. These are in nanoseconds.
         */
        unsigned long timer_slack_ns;
        unsigned long default_timer_slack_ns; //父进程的 timer_slack_ns
    #ifdef CONFIG_KASAN
        unsigned int kasan_depth;
    #endif
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
        /* Index of current stored address in ret_stack */
        int curr_ret_stack;
        /* Stack of return addresses for return function tracing */
        struct ftrace_ret_stack *ret_stack;
        /* time stamp for last schedule */
        unsigned long long ftrace_timestamp;
        /*
         * Number of functions that haven't been traced
         * because of depth overrun.
         */
        atomic_t trace_overrun;
        /* Pause for the tracing */
        atomic_t tracing_graph_pause;
    #endif
    #ifdef CONFIG_TRACING
        /* state flags for use by tracers */
        unsigned long trace;
        /* bitmask and counter of trace recursion */
        unsigned long trace_recursion;
    #endif /* CONFIG_TRACING */
    #ifdef CONFIG_MEMCG
        struct mem_cgroup *memcg_in_oom;
        gfp_t memcg_oom_gfp_mask;
        int memcg_oom_order;
        /* number of pages to reclaim on returning to userland */
        unsigned int memcg_nr_pages_over_high;
    #endif
    #ifdef CONFIG_UPROBES
        struct uprobe_task *utask;
    #endif
    #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
        unsigned long   task_state_change;
    #endif
    /* CPU-specific state of this task */
        struct thread_struct thread;  //克隆父进程
    /*
     * WARNING: on x86, 'thread_struct' contains a variable-sized
     * structure.  It *MUST* be at the end of 'task_struct'.
     *
     * Do not put anything below here!
     */
    };
  • 相关阅读:
    Zookeeper中Watcher监听实现增删改
    Zookeeper
    pyspider爬豆瓣电影实例
    纵表与横表转换(实用)
    完善爬取糗百的段子
    为自己的爬虫更换代理和HTML头部
    我的第一个爬虫(爬取糗百的段子)
    django创建blog
    python-study-23
    python-study-22
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/7253569.html
Copyright © 2020-2023  润新知