• ICM Technex 2017 and Codeforces Round #400 (Div. 1 + Div. 2, combined) C


    Molly Hooper has n different kinds of chemicals arranged in a line. Each of the chemicals has an affection value, The i-th of them has affection value ai.

    Molly wants Sherlock to fall in love with her. She intends to do this by mixing a contiguous segment of chemicals together to make a love potion with total affection value as a non-negative integer power of k. Total affection value of a continuous segment of chemicals is the sum of affection values of each chemical in that segment.

    Help her to do so in finding the total number of such segments.

    Input

    The first line of input contains two integers, n and k, the number of chemicals and the number, such that the total affection value is a non-negative power of this number k. (1 ≤ n ≤ 105, 1 ≤ |k| ≤ 10).

    Next line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — affection values of chemicals.

    Output

    Output a single integer — the number of valid segments.

    Examples
    input
    4 2
    2 2 2 2
    output
    8
    input
    4 -3
    3 -6 -3 12
    output
    3
    Note

    Do keep in mind that k0 = 1.

    In the first sample, Molly can get following different affection values:

    • 2: segments [1, 1], [2, 2], [3, 3], [4, 4];
    • 4: segments [1, 2], [2, 3], [3, 4];
    • 6: segments [1, 3], [2, 4];
    • 8: segments [1, 4].

    Out of these, 2, 4 and 8 are powers of k = 2. Therefore, the answer is 8.

    In the second sample, Molly can choose segments [1, 2], [3, 3], [3, 4].

    题意:问k^x==(数组区间和),问一共有多少区间符合(看样列)

    解法:

    1 单个问题,已知一个数,问区间和等于这个数的组合有多少,多个数字就加个循环就好了

    2 http://oj.jxust.edu.cn/problem.php?cid=1163&pid=2(一个类似问题)

    3 然后下面的代码要跑1s,如果时间掐得紧。。。则不能清空每次循环的结果(第二个代码)

     1 #include<bits/stdc++.h>
     2 typedef long long LL;
     3 typedef unsigned long long ULL;
     4 using namespace std;
     5 map<LL,LL>Mp,mp;
     6 vector<LL>Ve;
     7 LL num[300000];
     8 int n,k;
     9 int main(){
    10     scanf("%d%d",&n,&k);
    11     for(int i=1;i<=n;i++){
    12         cin>>num[i];
    13     }
    14     Ve.push_back(1);
    15     if(k==-1){
    16         Ve.push_back(-1);
    17     }else if(k!=1){
    18         for(LL i=k;i<=(2e15);i*=k){
    19             Ve.push_back(i);
    20         }
    21     }
    22     LL ans=0;
    23     for(LL i=0;i<Ve.size();i++){
    24         Mp.clear();
    25         Mp[0]=1;
    26         LL sum=0;
    27         for(int j=1;j<=n;j++){
    28             sum+=num[j],Mp[sum]++;
    29             LL pos=sum-(Ve[i]);
    30             if(Mp.find(pos)!=Mp.end()){
    31                 ans+=Mp[pos];
    32             }
    33         }
    34     }
    35     printf("%lld
    ",ans);
    36     return 0;
    37 }
     1 int n;
     2     cin >> n;
     3     int k;
     4     cin >> k;
     5     FI(n) {
     6         cin >> a[i];
     7         pref[i + 1] = pref[i] + a[i];
     8     }
     9     vector<ll> v;
    10     if (k == 1) {
    11         v = {1};
    12     } else if (k == -1) {
    13         v = {1, -1};
    14     } else {
    15         ll t = 1;
    16         while (abs(t) < 2e14) {
    17             v.push_back(t);
    18             t *= k;
    19         }
    20     }
    21 //    DBN(v);
    22     ll ans = 0;
    23     cnt[0]++;
    24     for (int i = 0; i < n; ++i) {
    25         ll t = pref[i + 1];
    26         for (ll need : v) {
    27             ll x = t - need;
    28             auto it = cnt.find(x);
    29             if (it == cnt.end()) continue;
    30             ans += it->second;
    31 //            DBN(i, need, it->second);
    32         }
    33         cnt[t]++;
    34     }
    35     cout << ans << endl;
  • 相关阅读:
    一题多解 —— 同时找到序列的最大值最小值
    中位数与顺序统计量
    软件开发 —— 极限编程(XP:Extreme Programming)
    一题多解 —— 二项式分布的期望和方差的计算
    C++中explicit关键字用法
    【联系】二项分布的对数似然函数与交叉熵(cross entropy)损失函数
    随机变量统计独立性的相关证明
    PowerShell管理SCOM_批量设置维护模式(下)
    导出AD用户所属组,查询AD用户(aduser)
    SQL脚本运行
  • 原文地址:https://www.cnblogs.com/yinghualuowu/p/7223388.html
Copyright © 2020-2023  润新知