4530: [Bjoi2014]大融合
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 990 Solved: 604
[Submit][Status][Discuss]
Description
小强要在N个孤立的星球上建立起一套通信系统。这套通信系统就是连接N个点的一个树。
这个树的边是一条一条添加上去的。在某个时刻,一条边的负载就是它所在的当前能够
联通的树上路过它的简单路径的数量。
例如,在上图中,现在一共有了5条边。其中,(3,8)这条边的负载是6,因
为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8)。
现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的
询问。
Input
第一行包含两个整数N,Q,表示星球的数量和操作的数量。星球从1开始编号。
接下来的Q行,每行是如下两种格式之一:
A x y 表示在x和y之间连一条边。保证之前x和y是不联通的。
Q x y 表示询问(x,y)这条边上的负载。保证x和y之间有一条边。
1≤N,Q≤100000
Output
对每个查询操作,输出被查询的边的负载。
Sample Input
8 6
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8
Sample Output
6
题解
LCT维护子树信息。
1 #include <algorithm> 2 #include <iostream> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cstdio> 6 7 inline void read(int & x) 8 { 9 int k = 1; x = 0; 10 char c = getchar(); 11 while (!isdigit(c)) 12 if (c == '-') c = getchar(), k = -1; 13 else c = getchar(); 14 while (isdigit(c)) 15 x = (x << 1) + (x << 3) + (c ^ 48), 16 c = getchar(); 17 x *= k; 18 } 19 20 const int N = 102000; 21 int n, m, tot, x, y, stk_top; 22 int faz[N], siz[N], tag[N], son[N][2], stk[N], bson[N]; 23 24 char opt; 25 26 inline int Root(int u) 27 { 28 return son[faz[u]][1] != u && son[faz[u]][0] != u; 29 } 30 31 inline char Getchar(void) 32 { 33 opt = getchar(); 34 while (opt == ' ' || opt == ' ') 35 opt = getchar(); 36 return opt; 37 } 38 39 void Swap(int & x, int & y) 40 { 41 x ^= y, y ^= x, x ^= y; 42 } 43 44 inline int Getson(int u) 45 { 46 return son[faz[u]][1] == u; 47 } 48 49 inline void Pushup(int u) 50 { 51 if (!u) return; 52 siz[u] = siz[son[u][0]] + siz[son[u][1]] + bson[u] + 1; 53 } 54 55 inline void Pushdown(int u) 56 { 57 if (!tag[u] || !u) return; 58 tag[son[u][0]] ^= 1, 59 tag[son[u][1]] ^= 1, 60 Swap(son[u][0], son[u][1]), 61 tag[u] = 0; 62 } 63 64 inline void Rotate(int u) 65 { 66 int y = faz[u], z = faz[y], ch = Getson(u), b = son[u][ch ^ 1]; 67 Pushdown(y), Pushdown(u); 68 if (!Root(y)) son[z][Getson(y)] = u; 69 son[u][ch ^ 1] = y, son[y][ch] = b; 70 faz[u] = z, faz[b] = y, faz[y] = u; 71 Pushup(y), Pushup(u); 72 } 73 74 inline void Splay(int u) 75 { 76 int cur = u; stk[stk_top = 1] = u; 77 while (!Root(cur)) stk[++stk_top] = cur = faz[cur]; 78 while (stk_top) Pushdown(stk[stk_top--]); 79 while (!Root(u)) 80 { 81 if (!Root(faz[u])) 82 if (Getson(u) == Getson(faz[u])) Rotate(faz[u]); 83 else Rotate(u); 84 Rotate(u); 85 } 86 } 87 88 inline void Access(int u) 89 { 90 for (int ch = 0; u; u = faz[ch = u]) 91 Splay(u), bson[u] += siz[son[u][1]] - siz[ch], son[u][1] = ch, Pushup(u); 92 } 93 94 inline void Mkrt(int u) 95 { 96 Access(u), Splay(u), tag[u] ^= 1; 97 } 98 99 inline void Split(int a, int b) 100 { 101 Mkrt(a), Access(b), Splay(b); 102 } 103 104 inline void Link(int a, int b) 105 { 106 Mkrt(a), Mkrt(b); 107 faz[a] = b, bson[b] += siz[a], Pushup(b); 108 } 109 110 inline void Get(int a, int b) 111 { 112 Mkrt(a), Mkrt(b); 113 printf("%lld ", (long long)siz[a] * (siz[b] - siz[a])); 114 } 115 116 int main() 117 { 118 read(n), read(m); 119 for (int i = 1; i <= n; ++i) siz[i] = 1; 120 for (int i = 1; i <= m; ++i) 121 { 122 opt = Getchar(), read(x), read(y); 123 if (opt == 'Q') Get(x, y); 124 if (opt == 'A') Link(x, y); 125 } 126 return 0; 127 }