给定一个具有 NN 个顶点的凸多边形,将顶点从 11 至 NN 标号,每个顶点的权值都是一个正整数。将这个凸多边形划分成 N−2N−2 个互不相交的三角形,试求这些三角形顶点的权值乘积和至少为多少。
Input
输入第一行为顶点数 NN
第二行依次为顶点 11 至顶点 NN 的权值。
Output
输出仅一行,为这些三角形顶点的权值乘积和的最小值。
Example
样例输入
5
121 122 123 245 231
样例输出
12214884
Hint
对于 100%100% 的数据,有 N≤50N≤50,每个点权值小于 109109。
思路
首先随便搞一个多边形:
然后给它顺时针每个顶点表上序号:
然后枚举i,ji,j,要求:i+1<ji+1<j,然后给i,ji,j连一条线,分割出来另一个多边形:多边形23456
然后在i,ji,j范围内枚举kk,使得多边形23456又可以分割。
分割成如下图:
设f[i][j]f[i][j]表示把i,ji,j的多边形切割成三角形后的权值乘积之和的最小值。
可得:
f[i][j]=min{f[i][k]+f[k][j]+a[i]∗a[j]∗a[k]}(0<i<j<k≤n)f[i][j]=min{f[i][k]+f[k][j]+a[i]∗a[j]∗a[k]}(0<i<j<k≤n)
初始化:
f[i][j]=inf(0<i≤n,0<j≤n)f[i][j]=inf(0<i≤n,0<j≤n)
f[i][i+1]=0(0<i<n)f[i][i+1]=0(0<i<n)
时间复杂度:O(n3)O(n3)
输出结果:f[1][n]f[1][n]
当然,这道题范围特别大:对于 100100 的数据,有 N≤50N≤50,每个点权值小于 109109。三个数相乘最高可达10271027,所以需要使用高精度。这里使用了C++大数类,转自代号4101
#include<bits/stdc++.h> using namespace std; const int maxn = 1000; struct bign{ int d[maxn], len; void clean() { while(len > 1 && !d[len-1]) len--; } bign() { memset(d, 0, sizeof(d)); len = 1; } bign(int num) { *this = num; } bign(char* num) { *this = num; } bign operator = (const char* num){ memset(d, 0, sizeof(d)); len = strlen(num); for(int i = 0; i < len; i++) d[i] = num[len-1-i] - '0'; clean(); return *this; } bign operator = (int num){ char s[20]; sprintf(s, "%d", num); *this = s; return *this; } bign operator + (const bign& b){ bign c = *this; int i; for (i = 0; i < b.len; i++){ c.d[i] += b.d[i]; if (c.d[i] > 9) c.d[i]%=10, c.d[i+1]++; } while (c.d[i] > 9) c.d[i++]%=10, c.d[i]++; c.len = max(len, b.len); if (c.d[i] && c.len <= i) c.len = i+1; return c; } bign operator - (const bign& b){ bign c = *this; int i; for (i = 0; i < b.len; i++){ c.d[i] -= b.d[i]; if (c.d[i] < 0) c.d[i]+=10, c.d[i+1]--; } while (c.d[i] < 0) c.d[i++]+=10, c.d[i]--; c.clean(); return c; } bign operator * (const bign& b)const{ int i, j; bign c; c.len = len + b.len; for(j = 0; j < b.len; j++) for(i = 0; i < len; i++) c.d[i+j] += d[i] * b.d[j]; for(i = 0; i < c.len-1; i++) c.d[i+1] += c.d[i]/10, c.d[i] %= 10; c.clean(); return c; } bign operator / (const bign& b){ int i, j; bign c = *this, a = 0; for (i = len - 1; i >= 0; i--) { a = a*10 + d[i]; for (j = 0; j < 10; j++) if (a < b*(j+1)) break; c.d[i] = j; a = a - b*j; } c.clean(); return c; } bign operator % (const bign& b){ int i, j; bign a = 0; for (i = len - 1; i >= 0; i--) { a = a*10 + d[i]; for (j = 0; j < 10; j++) if (a < b*(j+1)) break; a = a - b*j; } return a; } bign operator += (const bign& b){ *this = *this + b; return *this; } bool operator <(const bign& b) const{ if(len != b.len) return len < b.len; for(int i = len-1; i >= 0; i--) if(d[i] != b.d[i]) return d[i] < b.d[i]; return false; } bool operator >(const bign& b) const{return b < *this;} bool operator<=(const bign& b) const{return !(b < *this);} bool operator>=(const bign& b) const{return !(*this < b);} bool operator!=(const bign& b) const{return b < *this || *this < b;} bool operator==(const bign& b) const{return !(b < *this) && !(b > *this);} string str() const{ char s[maxn]={}; for(int i = 0; i < len; i++) s[len-1-i] = d[i]+'0'; return s; } }; istream& operator >> (istream& in, bign& x){ string s; in >> s; x = s.c_str(); return in; } ostream& operator << (ostream& out, const bign& x){ out << x.str(); return out; } #define ll bign ll f[55][55],a[55]; int n; int main(){ cin>>n; for(int i=1;i<=n;i+=1) cin>>a[i]; memset(f,63,sizeof(f)); for(int i=1;i<=n;i++) f[i][i+1]=0; for(int L=2;L<=n-1;L++){ for(int i=1;i<=n-L;i++){ int j=i+L; for(int k=i+1;k<=j-1;k++){ f[i][j]=min(f[i][k]+f[k][j]+a[i]*a[j]*a[k],f[i][j]); } } } cout<<f[1][n];putchar('\n'); return 0; }
转自https://www.cnblogs.com/yzx1798106406/p/10327145.html#10085