Bone Collector
Problem Description
Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output
One integer per line representing the maximum of the total value (this number will be less than 231).
Sample Input
1
5 10
1 2 3 4 5
5 4 3 2 1
Sample Output
14
1 #include<iostream>
2 #include<cstdio>
3 #include<cmath>
4 #include<cstring>
5 #include<algorithm>
6 #include<map>
7 #include<vector>
8 #include<set>
9 using namespace std;
10 #define ll long long
11 const int mod=1e9+7;
12 const int inf=1e9+7;
13 const int maxn=1005;
14 int dp[maxn][maxn];
15 int value[maxn];
16 int capacity[maxn];
17 int main()
18 {
19 ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
20 int T;
21 cin>>T;
22 while(T--)
23 {
24 memset(dp,0,sizeof(dp));
25 int n,v;
26 cin>>n>>v;
27 for(int i=1;i<=n;i++)
28 cin>>value[i];
29 for(int i=1;i<=n;i++)
30 cin>>capacity[i];
31 for(int i=1;i<=n;i++)
32 {
33 for(int j=0;j<=v;j++)//注意体积为0时的情况
34 {
35 if(j<capacity[i])//放不进
36 dp[i][j]=dp[i-1][j];
37 else
38 {
39 if(dp[i-1][j]>dp[i-1][j-capacity[i]]+value[i])//放得进但是亏了
40 dp[i][j]=dp[i-1][j];
41 else
42 dp[i][j]=dp[i-1][j-capacity[i]]+value[i];//不亏
43 }
44 }
45 }
46 cout<<dp[n][v]<<endl;
47 }
48 return 0;
49 }
一维优化:
1 #include<iostream>
2 #include<cstdio>
3 #include<cmath>
4 #include<cstring>
5 #include<algorithm>
6 #include<map>
7 #include<vector>
8 #include<set>
9 using namespace std;
10 #define ll long long
11 const int mod=1e9+7;
12 const int inf=1e9+7;
13 const int maxn=1005;
14 int dp[maxn];
15 int value[maxn];
16 int capacity[maxn];
17 int main()
18 {
19 ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
20 int T;
21 cin>>T;
22 while(T--)
23 {
24 memset(dp,0,sizeof(dp));
25 int n,v;
26 cin>>n>>v;
27 for(int i=1;i<=n;i++)
28 cin>>value[i];
29 for(int i=1;i<=n;i++)
30 cin>>capacity[i];
31 for(int i=1;i<=n;i++)
32 {
33 for(int j=v;j>=capacity[i];j--)
34 {
35 //if(j>=capacity[i])//由j的循环条件知,j一定大于等于capacity[i]
36 dp[j]=max(dp[j],dp[j-capacity[i]]+value[i]);
37 }
38 }
39 cout<<dp[v]<<endl;
40 }
41 return 0;
42 }