• 并查集详解+模板


      并查集,顾名思义,就是一个合并和查询的过程,其实际意义类似于等价划分的作用(划分出不同的等价类)。掌握基本的知识和思想后,便可以运用并查集来解决问题。其中,学会使用并查集的模板对解决并查集问题十分十分有帮助。

    并查集:(union-find sets)

      一种简单的用途广泛的集合. 并查集是若干个不相交集合,能够实现较快的合并和判断元素所在集合的操作,应用很多,如其求无向图的连通分量个数等。最完美的应用当属:实现Kruskar算法求最小生成树。

     并查集的精髓(即它的三种操作,结合实现代码模板进行理解):

    1、Make_Set(x) 把每一个元素初始化为一个集合

    初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身(也可以根据情况而变)。

    2、Find_Set(x) 查找一个元素所在的集合

    查找一个元素所在的集合,其精髓是找到这个元素所在集合的祖先!这个才是并查集判断和合并的最终依据。
    判断两个元素是否属于同一集合,只要看他们所在集合的祖先是否相同即可。
    合并两个集合,也是使一个集合的祖先成为另一个集合的祖先,具体见示意图

    3、Union(x,y) 合并x,y所在的两个集合

    合并两个不相交集合操作很简单:
    利用Find_Set找到其中两个集合的祖先,将一个集合的祖先指向另一个集合的祖先。如图



     

    并查集的优化

    1、Find_Set(x)时 路径压缩
    寻找祖先时我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度,有没有办法减小这个复杂度呢?
    答案是肯定的,这就是路径压缩,即当我们经过"递推"找到祖先节点后,"回溯"的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示;可见,路径压缩方便了以后的查找。

     

    2、Union(x,y)时 按秩合并
    即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度会相对较小。

    实现代码:

    int par[100];  //par[i]代表i的父结点
    int rank[100];    //rank[i]代表i结点所在树的高度
    
    void init(){    //初始化
        for(int i=1;i<=n;i++){
            par[i]=i;
            rank[i]=0;            //高度最初为0 
        }
    }
    
    int find(int x){    //查询根
        if(par[x]==x){
            return x;
        }else return par[x]=find(par[x]);
    }
    
    void unite(int x,int y){    //合并
        x=find(x);
        y=find(y);
        if(x==y)    return;
        
        if(rank[x]<rank[y]){
            par[x]=y;
        }else{
            par[y]=x;
            if(rank[x]==rank[y]){
                rank[x]++;            //高度加1 
            }
        }
    }
    
    bool same(int x,int y){  //判断是否同类
        return find(x)==find(y);
    }       

     文章参考来源:

    https://www.cnblogs.com/cherish_yimi/archive/2009/10/11/1580839.html

     
  • 相关阅读:
    使用事件驱动模型实现高效稳定的网络服务器程序
    Muduo 多线程模型:一个 Sudoku 服务器演变
    淘宝李晓拴:淘宝网PHP电子商务应用
    又一随机视频聊天网站内侧了,名字叫QQ偶遇,地址为:http://qq.17ouyu.com/
    又一随机视频聊天网站内侧了,地址为:http://www.17ouyu.com/
    多线程服务器的常用编程模型
    Linux系统shell脚本对字符串、数字、文件的判断
    【2022.01.11】HassOS的备份、HassOS的SSH连接、Docker的部署
    【2022.01.09】了解HassOS的开发者工具——添加自定义组件
    【2022.01.10】装修别墅、洋房户型的一些注意事项
  • 原文地址:https://www.cnblogs.com/xwh-blogs/p/12607774.html
Copyright © 2020-2023  润新知