问题来源:http://www.careercup.com/question?id=6335704
问题描述:
Given a N*N Matrix.
All rows are sorted, and all columns are sorted.
Find the Kth Largest element of the matrix.
解答:
先给出算法的时空复杂度,时间O(k * lg k),空间O(k)。
算法:为了方便描述不防假设矩阵左上角的元素最小,且k<=n。
1. 取每行行首元素建立规模为k的最小堆。
2. 删除堆顶元素,同时将该元素所在行的下一个元素插入最小堆
3. 循环步骤2,k次即可获得所需元素
复杂性分析: 第一步建堆时间为O(k * lg k). 第二三步插入删除堆顶元素k次,时间复杂度O(k * lg k).总的复杂度为O(k * lg k).
正确性分析:
每次确保删除的元素是整个矩阵中的当前最小元素,故而保证了准确性。
个人感觉:
算法还有待修改,毕竟这样找到的是前k大而不仅仅是第k大,做了许多无用功。