• 【tensorflow2.0】使用多GPU训练模型


    如果使用多GPU训练模型,推荐使用内置fit方法,较为方便,仅需添加2行代码。

    在Colab笔记本中:修改->笔记本设置->硬件加速器 中选择 GPU

    注:以下代码只能在Colab 上才能正确执行。

    可通过以下colab链接测试效果《tf_多GPU》:

    https://colab.research.google.com/drive/1j2kp_t0S_cofExSN7IyJ4QtMscbVlXU-

    MirroredStrategy过程简介:

    • 训练开始前,该策略在所有 N 个计算设备上均各复制一份完整的模型;
    • 每次训练传入一个批次的数据时,将数据分成 N 份,分别传入 N 个计算设备(即数据并行);
    • N 个计算设备使用本地变量(镜像变量)分别计算自己所获得的部分数据的梯度;
    • 使用分布式计算的 All-reduce 操作,在计算设备间高效交换梯度数据并进行求和,使得最终每个设备都有了所有设备的梯度之和;
    • 使用梯度求和的结果更新本地变量(镜像变量);
    • 当所有设备均更新本地变量后,进行下一轮训练(即该并行策略是同步的)。
    tensorflow_version 2.x
    import tensorflow as tf
    print(tf.__version__)
    from tensorflow.keras import * 
    # 此处在colab上使用1个GPU模拟出两个逻辑GPU进行多GPU训练
    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:
        # 设置两个逻辑GPU模拟多GPU训练
        try:
            tf.config.experimental.set_virtual_device_configuration(gpus[0],
                [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024),
                 tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)])
            logical_gpus = tf.config.experimental.list_logical_devices('GPU')
            print(len(gpus), "Physical GPU,", len(logical_gpus), "Logical GPUs")
        except RuntimeError as e:
            print(e)

    2.2.0-rc2

    1 Physical GPU, 2 Logical GPUs

    一,准备数据

    MAX_LEN = 300
    BATCH_SIZE = 32
    (x_train,y_train),(x_test,y_test) = datasets.reuters.load_data()
    x_train = preprocessing.sequence.pad_sequences(x_train,maxlen=MAX_LEN)
    x_test = preprocessing.sequence.pad_sequences(x_test,maxlen=MAX_LEN)
     
    MAX_WORDS = x_train.max()+1
    CAT_NUM = y_train.max()+1
     
    ds_train = tf.data.Dataset.from_tensor_slices((x_train,y_train)) 
              .shuffle(buffer_size = 1000).batch(BATCH_SIZE) 
              .prefetch(tf.data.experimental.AUTOTUNE).cache()
     
    ds_test = tf.data.Dataset.from_tensor_slices((x_test,y_test)) 
              .shuffle(buffer_size = 1000).batch(BATCH_SIZE) 
              .prefetch(tf.data.experimental.AUTOTUNE).cache()

    二,定义模型

    tf.keras.backend.clear_session()
    def create_model():
     
        model = models.Sequential()
     
        model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
        model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = "relu"))
        model.add(layers.MaxPool1D(2))
        model.add(layers.Conv1D(filters = 32,kernel_size = 3,activation = "relu"))
        model.add(layers.MaxPool1D(2))
        model.add(layers.Flatten())
        model.add(layers.Dense(CAT_NUM,activation = "softmax"))
        return(model)
     
    def compile_model(model):
        model.compile(optimizer=optimizers.Nadam(),
                    loss=losses.SparseCategoricalCrossentropy(from_logits=True),
                    metrics=[metrics.SparseCategoricalAccuracy(),metrics.SparseTopKCategoricalAccuracy(5)]) 
        return(model)

    三,训练模型

    # 增加以下两行代码
    strategy = tf.distribute.MirroredStrategy()  
    with strategy.scope(): 
        model = create_model()
        model.summary()
        model = compile_model(model)
     
    history = model.fit(ds_train,validation_data = ds_test,epochs = 10)  
    WARNING:tensorflow:NCCL is not supported when using virtual GPUs, fallingback to reduction to one device
    INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1')
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    embedding (Embedding)        (None, 300, 7)            216874    
    _________________________________________________________________
    conv1d (Conv1D)              (None, 296, 64)           2304      
    _________________________________________________________________
    max_pooling1d (MaxPooling1D) (None, 148, 64)           0         
    _________________________________________________________________
    conv1d_1 (Conv1D)            (None, 146, 32)           6176      
    _________________________________________________________________
    max_pooling1d_1 (MaxPooling1 (None, 73, 32)            0         
    _________________________________________________________________
    flatten (Flatten)            (None, 2336)              0         
    _________________________________________________________________
    dense (Dense)                (None, 46)                107502    
    =================================================================
    Total params: 332,856
    Trainable params: 332,856
    Non-trainable params: 0
    _________________________________________________________________
    Epoch 1/10
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
    INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
    281/281 [==============================] - 4s 15ms/step - sparse_categorical_accuracy: 0.3546 - loss: 3.5168 - sparse_top_k_categorical_accuracy: 0.7163 - val_sparse_categorical_accuracy: 0.5000 - val_loss: 3.3722 - val_sparse_top_k_categorical_accuracy: 0.7066
    Epoch 2/10
    281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.5279 - loss: 3.3386 - sparse_top_k_categorical_accuracy: 0.7267 - val_sparse_categorical_accuracy: 0.5387 - val_loss: 3.3299 - val_sparse_top_k_categorical_accuracy: 0.7173
    Epoch 3/10
    281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.5583 - loss: 3.3094 - sparse_top_k_categorical_accuracy: 0.7238 - val_sparse_categorical_accuracy: 0.5490 - val_loss: 3.3169 - val_sparse_top_k_categorical_accuracy: 0.7217
    Epoch 4/10
    281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.5856 - loss: 3.2818 - sparse_top_k_categorical_accuracy: 0.7244 - val_sparse_categorical_accuracy: 0.5574 - val_loss: 3.3077 - val_sparse_top_k_categorical_accuracy: 0.7217
    Epoch 5/10
    281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.5967 - loss: 3.2693 - sparse_top_k_categorical_accuracy: 0.7242 - val_sparse_categorical_accuracy: 0.5659 - val_loss: 3.2993 - val_sparse_top_k_categorical_accuracy: 0.7248
    Epoch 6/10
    281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.6030 - loss: 3.2626 - sparse_top_k_categorical_accuracy: 0.7262 - val_sparse_categorical_accuracy: 0.5690 - val_loss: 3.2974 - val_sparse_top_k_categorical_accuracy: 0.7244
    Epoch 7/10
    281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.6054 - loss: 3.2600 - sparse_top_k_categorical_accuracy: 0.7266 - val_sparse_categorical_accuracy: 0.5677 - val_loss: 3.2980 - val_sparse_top_k_categorical_accuracy: 0.7262
    Epoch 8/10
    281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.6065 - loss: 3.2581 - sparse_top_k_categorical_accuracy: 0.7273 - val_sparse_categorical_accuracy: 0.5708 - val_loss: 3.2990 - val_sparse_top_k_categorical_accuracy: 0.7262
    Epoch 9/10
    281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.6091 - loss: 3.2558 - sparse_top_k_categorical_accuracy: 0.7283 - val_sparse_categorical_accuracy: 0.5726 - val_loss: 3.2952 - val_sparse_top_k_categorical_accuracy: 0.7253
    Epoch 10/10
    281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.6093 - loss: 3.2551 - sparse_top_k_categorical_accuracy: 0.7288 - val_sparse_categorical_accuracy: 0.5726 - val_loss: 3.2908 - val_sparse_top_k_categorical_accuracy: 0.7244

    参考:

    开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

    GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

  • 相关阅读:
    ubuntu14.04 安装 zoom.us
    【JulyEdu-Python基础】第 8 课:Python第三方库
    【JulyEdu-Python基础】第 7 课:Python并发编程以及系统常用模块
    【JulyEdu-Python基础】第 6 课:高级面向对象
    【JulyEdu-Python基础】第 4 课:面向对象基础
    【深度学习笔记】第 7 课:文本和序列的深度模型
    【深度学习笔记】第 6 课:卷积神经网络简介
    【JulyEdu-Python基础】第 3 课:容器以及容器的访问使用
    【JulyEdu-Python基础】第 2 课:关键字和循环控制
    【JulyEdu-Python基础】第 1 课:入门基础
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12690709.html
Copyright © 2020-2023  润新知