• 学习算法和刷题的思路指南


    一、数据结构的存储方式

    数据结构的存储方式只有两种:数组(顺序存储)和链表(链式存储)。

    数组由于是紧凑连续存储,可以随机访问,通过索引快速找到对应元素,而且相对节约存储空间。但正因为连续存储,内存空间必须一次性分配够,所以说数组如果要扩容,需要重新分配一块更大的空间,再把数据全部复制过去,时间复杂度 O(N);而且你如果想在数组中间进行插入和删除,每次必须搬移后面的所有数据以保持连续,时间复杂度 O(N)。

    链表因为元素不连续,而是靠指针指向下一个元素的位置,所以不存在数组的扩容问题;如果知道某一元素的前驱和后驱,操作指针即可删除该元素或者插入新元素,时间复杂度 O(1)。但是正因为存储空间不连续,你无法根据一个索引算出对应元素的地址,所以不能随机访问;而且由于每个元素必须存储指向前后元素位置的指针,会消耗相对更多的储存空间。

    二、数据结构的基本操作

    基本操作:增删改查

    数据结构种类很多,但它们存在的目的都是在不同的应用场景,尽可能高效地增删查改。

    如何遍历 + 访问?我们仍然从最高层来看,各种数据结构的遍历 + 访问无非两种形式:线性的和非线性的。

    线性就是 for/while 迭代为代表,非线性就是递归为代表。再具体一步,无非以下几种框架:

    数组遍历框架,典型的线性迭代结构:

    void traverse(int[] arr) {
        for (int i = 0; i < arr.length; i++) {
            // 迭代访问 arr[i]
        }
    }
    

    链表遍历框架,兼具迭代和递归结构:

    class ListNode {
        int val;
        ListNode next;
    }
    
    void traverse(ListNode head) {
        for (ListNode p = head; p != null; p = p.next) {
            // 迭代访问 p.val
        }
    }
    
    void traverse(ListNode head) {
        // 递归访问 head.val
        traverse(head.next)
    }
    

    二叉树遍历框架,典型的非线性递归遍历结构:

    /* 基本的二叉树节点 */
    class TreeNode {
        int val;
        TreeNode left, right;
    }
    
    void traverse(TreeNode root) {
        traverse(root.left)
        traverse(root.right)
    }
    

    你看二叉树的递归遍历方式和链表的递归遍历方式,相似不?再看看二叉树结构和单链表结构,相似不?如果再多几条叉,N 叉树你会不会遍历?

    二叉树框架可以扩展为 N 叉树的遍历框架:

    /* 基本的 N 叉树节点 */
    class TreeNode {
        int val;
        TreeNode[] children;
    }
    
    void traverse(TreeNode root) {
        for (TreeNode child : root.children)
            traverse(child)
    }
    

    N 叉树的遍历又可以扩展为图的遍历,因为图就是好几 N 叉棵树的结合体。

    你说图是可能出现环的?这个很好办,用个布尔数组 visited 做标记就行了,这里就不写代码了。

    所谓框架,就是套路。不管增删查改,这些代码都是永远无法脱离的结构,你可以把这个结构作为大纲,根据具体问题在框架上添加代码就行了,下面会具体举例。

    三、算法刷题指南

    首先要明确的是,数据结构是工具,算法是通过合适的工具解决特定问题的方法。也就是说,学习算法之前,最起码得了解那些常用的数据结构,了解它们的特性和缺陷。

    那么该如何在 LeetCode 刷题呢?

    先刷二叉树,先刷二叉树,先刷二叉树!

    为什么要先刷二叉树呢,因为二叉树是最容易培养框架思维的,而且大部分算法技巧,本质上都是树的遍历问题。

    刷二叉树看到题目没思路?根据很多读者的问题,其实大家不是没思路,只是没有理解我们说的「框架」是什么。

    不要小看这几行破代码,几乎所有二叉树的题目都是一套这个框架就出来了。

    void traverse(TreeNode root) {
        // 前序遍历
        traverse(root.left)
        // 中序遍历
        traverse(root.right)
        // 后序遍历
    }
    

    比如说我随便拿几道题的解法出来,不用管具体的代码逻辑,只要看看框架在其中是如何发挥作用的就行。

    LeetCode 124 题,难度 Hard,让你求二叉树中最大路径和,主要代码如下:

    int ans = INT_MIN;
    int oneSideMax(TreeNode* root) {
        if (root == nullptr) return 0;
        int left = max(0, oneSideMax(root->left));
        int right = max(0, oneSideMax(root->right));
        ans = max(ans, left + right + root->val);
        return max(left, right) + root->val;
    }
    

    先感受下结构,我读到这里没看这个题,为的是完整的完成我的计划。对这个题真感兴趣,可以先打个标记,之后利用其他空余时间看,或者用你玩手机、刷抖音、打游戏的时间看。

    你看,这就是个后序遍历嘛。

    LeetCode 105 题,难度 Medium,让你根据前序遍历和中序遍历的结果还原一棵二叉树,很经典的问题吧,主要代码如下:

    TreeNode buildTree(int[] preorder, int preStart, int preEnd, 
        int[] inorder, int inStart, int inEnd, Map<Integer, Integer> inMap) {
    
        if(preStart > preEnd || inStart > inEnd) return null;
    
        TreeNode root = new TreeNode(preorder[preStart]);
        int inRoot = inMap.get(root.val);
        int numsLeft = inRoot - inStart;
    
        root.left = buildTree(preorder, preStart + 1, preStart + numsLeft, 
                              inorder, inStart, inRoot - 1, inMap);
        root.right = buildTree(preorder, preStart + numsLeft + 1, preEnd, 
                              inorder, inRoot + 1, inEnd, inMap);
        return root;
    }
    

    不要看这个函数的参数很多,只是为了控制数组索引而已,本质上该算法也就是一个前序遍历。

    LeetCode 99 题,难度 Hard,恢复一棵 BST,主要代码如下:

    void traverse(TreeNode* node) {
        if (!node) return;
        traverse(node->left);
        if (node->val < prev->val) {
            s = (s == NULL) ? prev : s;
            t = node;
        }
        prev = node;
        traverse(node->right);
    }
    

    这不就是个中序遍历嘛,对于一棵 BST 中序遍历意味着什么,应该不需要解释了吧。

    你看,Hard 难度的题目不过如此,而且还这么有规律可循,只要把框架写出来,然后往相应的位置加东西就行了,这不就是思路吗。

    对于一个理解二叉树的人来说,刷一道二叉树的题目花不了多长时间。那么如果你对刷题无从下手或者有畏惧心理,不妨从二叉树下手,前 10 道也许有点难受;结合框架再做 20 道,也许你就有点自己的理解了;刷完整个专题,再去做什么回溯动规分治专题,你就会发现只要涉及递归的问题,都是树的问题。

    再举例吧,说几道我们之前文章写过的问题。

    动态规划详解说过凑零钱问题,暴力解法就是遍历一棵 N 叉树:

    def coinChange(coins: List[int], amount: int):
    
        def dp(n):
            if n == 0: return 0
            if n < 0: return -1
    
            res = float('INF')
            for coin in coins:
                subproblem = dp(n - coin)
                # 子问题无解,跳过
                if subproblem == -1: continue
                res = min(res, 1 + subproblem)
            return res if res != float('INF') else -1
    
        return dp(amount)
    

    这么多代码看不懂咋办?直接提取出框架,就能看出核心思路了:

    # 不过是一个 N 叉树的遍历问题而已
    def dp(n):
        for coin in coins:
            dp(n - coin)
    

    其实很多动态规划问题就是在遍历一棵树,你如果对树的遍历操作烂熟于心,起码知道怎么把思路转化成代码,也知道如何提取别人解法的核心思路。

    再看看回溯算法,前文回溯算法详解干脆直接说了,回溯算法就是个 N 叉树的前后序遍历问题,没有例外。

    比如 N 皇后问题吧,主要代码如下:

    void backtrack(int[] nums, LinkedList<Integer> track) {
        if (track.size() == nums.length) {
            res.add(new LinkedList(track));
            return;
        }
    
        for (int i = 0; i < nums.length; i++) {
            if (track.contains(nums[i]))
                continue;
            track.add(nums[i]);
            // 进入下一层决策树
            backtrack(nums, track);
            track.removeLast();
        }
    
    /* 提取出 N 叉树遍历框架 */
    void backtrack(int[] nums, LinkedList<Integer> track) {
        for (int i = 0; i < nums.length; i++) {
            backtrack(nums, track);
    }
    

    N 叉树的遍历框架,找出来了把~你说,树这种结构重不重要?

    综上,对于畏惧算法的朋友来说,可以先刷树的相关题目,试着从框架上看问题,而不要纠结于细节问题。

    纠结细节问题,就比如纠结 i 到底应该加到 n 还是加到 n - 1,这个数组的大小到底应该开 n 还是 n + 1 ?

    从框架上看问题,就是像我们这样基于框架进行抽取和扩展,既可以在看别人解法时快速理解核心逻辑,也有助于找到我们自己写解法时的思路方向。

    当然,如果细节出错,你得不到正确的答案,但是只要有框架,你再错也错不到哪去,因为你的方向是对的。

    但是,你要是心中没有框架,那么你根本无法解题,给了你答案,你也不会发现这就是个树的遍历问题。

    这种思维是很重要的,动态规划详解中总结的找状态转移方程的几步流程,有时候按照流程写出解法,说实话我自己都不知道为啥是对的,反正它就是对了。。。

    这就是框架的力量,能够保证你在快睡着的时候,依然能写出正确的程序;就算你啥都不会,都能比别人高一个级别。

    四、总结几句

    数据结构的基本存储方式就是链式和顺序两种,基本操作就是增删查改,遍历方式无非迭代和递归。

    刷算法题建议从「树」分类开始刷,结合框架思维,把这几十道题刷完,对于树结构的理解应该就到位了。这时候去看回溯、动规、分治等算法专题,对思路的理解可能会更加深刻一些。

    参考阅读

    学习算法和刷题的思路指南

  • 相关阅读:
    Spring整合MyBatis (使用扫描包配置mapper代理)
    spring扫描配置文件
    文件上传解析器
    Jackson介绍(1)-jackson2.x与Jackson1.9的比较
    SpringMVC中使用RedirectAttributes重定向传参,防止暴露参数
    Spring中Model,ModelMap以及ModelAndView之间的区别
    浅谈@RequestMapping @ResponseBody 和 @RequestBody 注解的用法与区别
    Vagrant 创建虚拟环境
    centos安装VirtualBox增强包VBoxGuestAdditions
    Vagrant 命令详解
  • 原文地址:https://www.cnblogs.com/xinrong2019/p/13019301.html
Copyright © 2020-2023  润新知