• Apache Hadoop集群安装(NameNode HA + SPARK + 机架感知)



    1、主机规划

    序号主机名IP地址角色
    1nn-1192.168.9.21NameNode、mr-jobhistory、zookeeper、JournalNode
    2nn-2192.168.9.22Secondary NameNodeJournalNode
    3dn-1192.168.9.23DataNode、JournalNode、zookeeper、ResourceManager、NodeManager
    4dn-2192.168.9.24DataNode、zookeeper、NodeManager
    5dn-3192.168.9.25DataNode、NodeManager
    集群说明:
    (1)、对于集群规模小于7台和以下的, 可以不做NameNode HA。
    (2)、HA的集群, JournalNode节点要在3个以上, 建议设置成5个节点。JournalNode是轻量级服务, 为了本地性, 其中两个JournalNode和两台NameNode节点复用。其他JournalNode和分散在其他节点上。
    3HA的集群,zookeeper节点要在3个以上, 建议设置成5个或者7个节点。zookeeper可以和DataNode节点复用。
    (4HA的集群,ResourceManager建议单独一个节点。对于较大规模的集群,且有空闲的主机资源, 可以考虑设置ResourceManager的HA。


    2、主机环境设置

    2.1 配置JDK


    卸载OpenJDK:
    1. --查看java版本
    2. [root@dtgr ~]# java -version
    3. java version "1.7.0_45"
    4. OpenJDK Runtime Environment (rhel-2.4.3.3.el6-x86_64 u45-b15)
    5. OpenJDK 64-Bit Server VM (build 24.45-b08, mixed mode)
    6. --查看安装源
    7. [root@dtgr ~]# rpm -qa | grep java
    8. java-1.7.0-openjdk-1.7.0.45-2.4.3.3.el6.x86_64
    9. -- 卸载
    10. [root@dtgr ~]# rpm -e --nodeps java-1.7.0-openjdk-1.7.0.45-2.4.3.3.el6.x86_64
    11. --验证是否卸载成功
    12. [root@dtgr ~]# rpm -qa | grep java
    13. [root@dtgr ~]# java -version
    14. -bash: /usr/bin/java: 没有那个文件或目录

    安装jdk:
    1. -- 下载并解压java源码包
    2. [root@dtgr java]# mkdir /usr/local/java
    3. [root@dtgr java]# mv jdk-7u79-linux-x64.tar.gz /usr/local/java
    4. [root@dtgr java]# cd /usr/local/java
    5. [root@dtgr java]# tar xvf jdk-7u79-linux-x64.tar.gz
    6. [root@dtgr java]# ls
    7. jdk1.7.0_79 jdk-7u79-linux-x64.tar.gz
    8. [root@dtgr java]#
    9. --- 添加环境变量
    10. [root@dtgr java]# vim /etc/profile
    11. [root@dtgr java]# tail /etc/profile
    12. export JAVA_HOME=/usr/local/java/jdk1.7.0_79
    13. export JRE_HOME=/usr/local/java/jdk1.7.0_79/jre
    14. export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib:$CLASSPATH
    15. export PATH=$JAVA_HOME/bin:$PATH
    16. -- 生效环境变量
    17. [root@dtgr ~]# source /etc/profile
    18. -- 验证
    19. [root@dtgr ~]# java -version
    20. java version "1.7.0_79"
    21. Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
    22. Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)
    23. [root@dtgr ~]# javac -version
    24. javac 1.7.0_79

    2.2 修改主机名和配置主机名解析
    在所有节点按照规划修改主机名, 并将主机名加入/etc/hosts文件。
    修改主机名:
    1. [root@dn-3 ~]# cat /etc/sysconfig/network
    2. NETWORKING=yes
    3. HOSTNAME=dn-3
    4. [root@dn-3 ~]# hostname dn-3

    配置/etc/hosts, 并分发到所有节点:
    1. [root@dn-3 ~]# cat /etc/hosts
    2. 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
    3. ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
    4. 192.168.9.21 nn-1
    5. 192.168.9.22 nn-2
    6. 192.168.9.23 dn-1
    7. 192.168.9.24 dn-2
    8. 192.168.9.25 dn-3

    2.3 新建hadoop账户

    用户和组均为hadoop, 密码为hadoop, home目录为/hadoop。
    1. [root@dn-3 ~]# useradd -d /hadoop hadoop

    2.4 配置ntp时钟同步

    将nn-1主机作为时钟源)
    #vi  /etc/ntp.conf
    #server 0.centos.pool.ntp.org
    #server 1.centos.pool.ntp.org
    #server 2.centos.pool.ntp.org
    server nn-1

    配置ntp服务自启动
    #chkconfig ntpd on
    启动ntp服务
    #service ntpd start

    2.5 关闭防火墙iptables和selinux

    (1)、关闭iptables
    1. [root@dn-3 ~]# service iptables stop
    2. [root@dn-3 ~]# chkconfig iptables off
    3. [root@dn-3 ~]# chkconfig --list | grep iptables
    4. iptables 0:关闭 1:关闭 2:关闭 3:关闭 4:关闭 5:关闭 6:关闭
    5. [root@dn-3 ~]#

    (2)、关闭selinux
    1. [root@dn-3 ~]# setenforce 0
    2. setenforce: SELinux is disabled
    3. [root@dn-3 ~]# vim /etc/sysconfig/selinux
    SELINUX=disabled

    2.6 设置ssh无密码登陆

    (1)、在所有节点生成密钥
    所有节点, 切换到hadoop用户下,生成密钥,一路回车:
    1. [hadoop@nn-1 ~]$ ssh-keygen -t rsa

    (2)、在nn-1上面,将公钥复制到文件authorized_keys中:
    命令:$ ssh  主机名   'cat ./.ssh/id_rsa.pub' >> authorized_keys
    将上面的命令的主机名替换成实际的主机名, 在nn-1上面将所有的主机都执行一次,包括自己, 如下示例:
    1. [hadoop@nn-1 ~]$ ssh nn-1 'cat ./.ssh/id_rsa.pub' >> authorized_keys
    2. hadoop@nn-1's password:
    3. [hadoop@nn-1 ~]$

    (3)、设置权限
    1. [hadoop@nn-1 .ssh]$ chmod 644 authorized_keys

    (4)、将authorized_keys分发到所有节点: $HOME/.ssh/ 。
    如下示例:
    1. [hadoop@nn-1 .ssh]$ scp authorized_keys hadoop@nn-2:/hadoop/.ssh/

    3、安装配置Hadoop


    说明: 先在nn-1上面修改配置, 配置完毕批量分发到其他节点。

    3.1 上传hadoop、zookeeper安装包

    复制安装包到/hadoop目录下。
    解压安装包: [hadoop@nn-1 ~]$ tar -xzvf hadoop2-js-0121.tar.gz

    3.2 修改hadoop-env.sh

    1. export JAVA_HOME=/usr/local/java/jdk1.7.0_79
    2. export HADOOP_HEAPSIZE=2000
    3. export HADOOP_NAMENODE_INIT_HEAPSIZE=10000
    4. export HADOOP_OPTS="-server $HADOOP_OPTS -Djava.net.preferIPv4Stack=true"
    5. export HADOOP_NAMENODE_OPTS="-Xmx15000m -Xms15000m -Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger
    6. =${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"

    参数说明参考: http://blog.csdn.net/fenglibing/article/details/31051225


    3.3 修改core-site.xml

    1. <configuration>
    2. <property>
    3. <name>fs.defaultFS</name>
    4. <value>hdfs://dpi</value>
    5. </property>
    6. <property>
    7. <name>io.file.buffer.size</name>
    8. <value>131072</value>
    9. </property>
    10. <property>
    11. <name>hadoop.tmp.dir</name>
    12. <value>file:/hadoop/hdfs/temp</value>
    13. <description>Abase for other temporary directories.</description>
    14. </property>
    15. <property>
    16. <name>hadoop.proxyuser.hduser.hosts</name>
    17. <value>*</value>
    18. </property>
    19. <property>
    20. <name>hadoop.proxyuser.hduser.groups</name>
    21. <value>*</value>
    22. </property>
    23. <property>
    24. <name>ha.zookeeper.quorum</name>
    25. <value>dn-1:2181,dn-2:2181,dn-3:2181</value>
    26. </property>
    27. </configuration>

    3.4 修改hdfs-site.xml

    1. <configuration>
    2. <property>
    3. <name>dfs.namenode.secondary.http-address</name>
    4. <value>nn-1:9001</value>
    5. </property>
    6. <property>
    7. <name>dfs.namenode.name.dir</name>
    8. <value>file:/hadoop/hdfs/name</value>
    9. </property>
    10. <property>
    11. <name>dfs.datanode.data.dir</name>
    12. <value>file:/hadoop/hdfs/data,file:/hadoopdata/hdfs/data</value>
    13. </property>
    14. <property>
    15. <name>dfs.replication</name>
    16. <value>3</value>
    17. </property>
    18. <property>
    19. <name>dfs.webhdfs.enabled</name>
    20. <value>true</value>
    21. </property>
    22. <property>
    23. <name>dfs.nameservices</name>
    24. <value>dpi</value>
    25. </property>
    26. <property>
    27. <name>dfs.ha.namenodes.dpi</name>
    28. <value>nn-1,nn-2</value>
    29. </property>
    30. <property>
    31. <name>dfs.namenode.rpc-address.dpi.nn-1</name>
    32. <value>nn-1:9000</value>
    33. </property>
    34. <property>
    35. <name>dfs.namenode.http-address.dpi.nn-1</name>
    36. <value>nn-1:50070</value>
    37. </property>
    38. <property>
    39. <name>dfs.namenode.rpc-address.dpi.nn-2</name>
    40. <value>nn-2:9000</value>
    41. </property>
    42. <property>
    43. <name>dfs.namenode.http-address.dpi.nn-2</name>
    44. <value>nn-2:50070</value>
    45. </property>
    46. <property>
    47. <name>dfs.namenode.servicerpc-address.dpi.nn-1</name>
    48. <value>nn-1:53310</value>
    49. </property>
    50. <property>
    51. <name>dfs.namenode.servicerpc-address.dpi.nn-2</name>
    52. <value>nn-2:53310</value>
    53. </property>
    54. <property>
    55. <name>dfs.ha.automatic-failover.enabled</name>
    56. <value>true</value>
    57. </property>
    58. <property>
    59. <name>dfs.namenode.shared.edits.dir</name>
    60. <value>qjournal://nn-1:8485;nn-2:8485;dn-1:8485/dpi</value>
    61. </property>
    62. <property>
    63. <name>dfs.client.failover.proxy.provider.dpi</name>
    64. <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    65. </property>
    66. <property>
    67. <name>dfs.journalnode.edits.dir</name>
    68. <value>/hadoop/hdfs/journal</value>
    69. </property>
    70. <property>
    71. <name>dfs.ha.fencing.methods</name>
    72. <value>sshfence</value>
    73. </property>
    74. <property>
    75. <name>dfs.ha.fencing.ssh.private-key-files</name>
    76. <value>/hadoop/.ssh/id_rsa</value>
    77. </property>
    78. </configuration>

    参数说明参考: http://www.aboutyun.com/thread-10572-1-1.html

    新建配置文件中的目录:
    1. mkdir -p /hadoop/hdfs/name
    2. mkdir -p /hadoop/hdfs/data
    3. mkdir -p /hadoop/hdfs/temp
    4. mkdir -p /hadoop/hdfs/journal
    5. 授权:chmod 755 /hadoop/hdfs
    6. mkdir -p /hadoopdata/hdfs/data
    7. chmod 755 /hadoopdata/hdfs

    属主和属组修改为:hadoop:hadoop


    3.5 修改mapred-site.xml


    1. <configuration>
    2. <property>
    3. <name>mapreduce.framework.name</name>
    4. <value>yarn</value>
    5. </property>
    6. <property>
    7. <name>mapreduce.jobhistory.address</name>
    8. <value>nn-1:10020</value>
    9. </property>
    10. <property>
    11. <name>mapreduce.jobhistory.webapp.address</name>
    12. <value>nn-1:19888</value>
    13. </property>
    14. </configuration>


    3.6 修改yarn-site.xml

    1. <configuration>
    2. <!-- Site specific YARN configuration properties -->
    3. <property>
    4. <name>yarn.nodemanager.aux-services</name>
    5. <value>mapreduce_shuffle</value>
    6. </property>
    7. <property>
    8. <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
    9. <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    10. </property>
    11. <property>
    12. <name>yarn.resourcemanager.address</name>
    13. <value>dn-1:8032</value>
    14. </property>
    15. <property>
    16. <name>yarn.resourcemanager.scheduler.address</name>
    17. <value>dn-1:8030</value>
    18. </property>
    19. <property>
    20. <name>yarn.resourcemanager.resource-tracker.address</name>
    21. <value>dn-1:8031</value>
    22. </property>
    23. <property>
    24. <name>yarn.resourcemanager.admin.address</name>
    25. <value>dn-1:8033</value>
    26. </property>
    27. <property>
    28. <name>yarn.resourcemanager.webapp.address</name>
    29. <value>dn-1:8088</value>
    30. </property>
    31. </configuration>

    3.7 修改slaves

    将所有的DataNode节点加入到slaves文件中:
    1. dn-1
    2. dn-2
    3. dn-3


    3.8 修改yarn-env.sh

    1. # some Java parameters
    2. # export JAVA_HOME=/home/y/libexec/jdk1.6.0/
    3. if [ "$JAVA_HOME" != "" ]; then
    4. #echo "run java in $JAVA_HOME"
    5. JAVA_HOME=/usr/local/java/jdk1.7.0_79
    6. fi
    7. JAVA_HEAP_MAX=-Xmx15000m
    8. YARN_HEAPSIZE=15000
    9. export YARN_RESOURCEMANAGER_HEAPSIZE=5000
    10. export YARN_TIMELINESERVER_HEAPSIZE=10000
    11. export YARN_NODEMANAGER_HEAPSIZE=10000

    3.9 分发配置好的hadoop目录到所有节点

    1. [hadoop@nn-1 ~]$ scp -rp hadoop hadoop@nn-2:/hadoop
    2. [hadoop@nn-1 ~]$ scp -rp hadoop hadoop@dn-1:/hadoop
    3. [hadoop@nn-1 ~]$ scp -rp hadoop hadoop@dn-2:/hadoop
    4. [hadoop@nn-1 ~]$ scp -rp hadoop hadoop@dn-3:/hadoop

    4 安装配置zookeeper

    切换到hadoop目录下面, 根据规划, 三台zookeeper节点为:nn-1, dn-1, dn-2。
    先在nn-1节点配置zookeeper, 然后分发至三个zookeeper节点:
    4.1 在nn-1上传并解压zookeeper

    4.2 修改配置文件/hadoop/zookeeper/conf/zoo.cfg

    1. dataDir=/hadoop/zookeeper/data/
    2. dataLogDir=/hadoop/zookeeper/log/
    3. # the port at which the clients will connect
    4. clientPort=2181
    5. server.1=nn-1:2887:3887
    6. server.2=dn-1:2888:3888
    7. server.3=dn-2:2889:3889

    4.3 从nn-1分发配置的zookeeper目录到其他节点

    1. [hadoop@nn-1 ~]$ scp -rp zookeeper hadoop@dn-1:/hadoop
    2. [hadoop@nn-1 ~]$ scp -rp zookeeper hadoop@dn-2:/hadoop

    4.4 在所有zk节点创建目录

    1. [hadoop@dn-1 ~]$ mkdir /hadoop/zookeeper/data/
    2. [hadoop@dn-1 ~]$ mkdir /hadoop/zookeeper/log/

    4.5 修改myid

    在所有zk节点, 切换到目录/hadoop/zookeeper/data,创建myid文件:
    注意:myid文件的内容为zoo.cfg文件中配置的server.后面的数字(即nn-1为1,dn-1为2,dn-2为3)。
    在nn-1节点的myid内容为:
    1. [hadoop@nn-1 data]$ echo 1 > /hadoop/zookeeper/data/myid

    其他zk节点也安要求创建myid文件。


    4.6 设置环境变量

    1. $ echo "export ZOOKEEPER_HOME=/hadoop/zookeeper" >> $HOME/.bash_profile
    2. $ echo "export PATH=$ZOOKEEPER_HOME/bin:$PATH" >> $HOME/.bash_profile
    3. $ source $HOME/.bash_profile


    5 集群启动

    5.1 启动zookeeper

    根据规划, zk的节点为nn-1、dn-1和dn-2, 在这三台节点分别启动zk:

    启动命令:
    1. [hadoop@nn-1 ~]$ /hadoop/zookeeper/bin/zkServer.sh start
    2. JMX enabled by default
    3. Using config: /hadoop/zookeeper/bin/../conf/zoo.cfg
    4. Starting zookeeper ... STARTED

    查看进程, 可以看到QuorumPeerMain:
    1. [hadoop@nn-1 ~]$ jps
    2. 9382 QuorumPeerMain
    3. 9407 Jps

    查看状态, 可以看到Mode: follower, 说明这是zk的从节点:
    1. [hadoop@nn-1 ~]$ /hadoop/zookeeper/bin/zkServer.sh status
    2. JMX enabled by default
    3. Using config: /hadoop/zookeeper/bin/../conf/zoo.cfg
    4. Mode: follower

    查看状态, 可以看到Mode: leader, 说明这是zk的leader节点:
    1. [hadoop@dn-1 data]$ /hadoop/zookeeper/bin/zkServer.sh status
    2. JMX enabled by default
    3. Using config: /hadoop/zookeeper/bin/../conf/zoo.cfg
    4. Mode: leader

    5.2 格式化zookeeper集群(只做一次)(机器nn-1上执行)


    1. [hadoop@nn-1 ~]$ /hadoop/hadoop/bin/hdfs zkfc -formatZK
    中间有个交互的步骤, 输入Y:
     
    进入zk, 查看是否创建成功:
    1. [hadoop@nn-1 bin]$ ./zkCli.sh
     

    5.3 启动zkfc(机器nn-1,nn-2上执行)

    1. [hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start zkfc
    2. starting zkfc, logging to /hadoop/hadoop/logs/hadoop-hadoop-zkfc-nn-1.out

    使用jps, 可以看到进程DFSZKFailoverController:
    1. [hadoop@nn-1 ~]$ jps
    2. 9681 Jps
    3. 9638 DFSZKFailoverController
    4. 9382 QuorumPeerMain

     

    5.4 启动journalnode

    根据规划, 启动journalnode节点为nn-1、nn-2和dn-1, 在这三个节点分别使用如下的命令启动服务:
    1. [hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start journalnode
    2. starting journalnode, logging to /hadoop/hadoop/logs/hadoop-hadoop-journalnode-nn-1.out

    使用jps命令可以看到进程JournalNode:
    1. [hadoop@nn-1 ~]$ jps
    2. 9714 JournalNode
    3. 9638 DFSZKFailoverController
    4. 9382 QuorumPeerMain
    5. 9762 Jps

    5.5 格式化namenode(机器nn-1上执行)

    1. [hadoop@nn-1 ~]$ /hadoop/hadoop/bin/hadoop namenode -format

    查看日志信息:
     

    5.6 启动namenode(机器nn-1上执行)

    1. [hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start namenode
    2. starting namenode, logging to /hadoop/hadoop/logs/hadoop-hadoop-namenode-nn-1.out
    使用jps命令可以看到进程NameNode:
    1. [hadoop@nn-1 ~]$ jps
    2. 9714 JournalNode
    3. 9638 DFSZKFailoverController
    4. 9382 QuorumPeerMain
    5. 10157 NameNode
    6. 10269 Jps

    5.7 格式化secondnamnode(机器nn-2上执行)

    1. [hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs namenode -bootstrapStandby
    部分日志如下:
     

    5.8 启动namenode(机器nn-2上执行)

    1. [hadoop@nn-2 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start namenode
    2. starting namenode, logging to /hadoop/hadoop/logs/hadoop-hadoop-namenode-nn-2.out
    使用jps命令可以看到进程NameNode:
    1. [hadoop@nn-2 ~]$ jps
    2. 53990 NameNode
    3. 54083 Jps
    4. 53824 JournalNode
    5. 53708 DFSZKFailoverController

    5.9 启动datanode(机器dn-1到dn-3上执行)

    1. [hadoop@dn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start datanode
    使用jps可以看到DataNode进程:
    1. [hadoop@dn-1 temp]$ jps
    2. 57007 Jps
    3. 56927 DataNode
    4. 56223 QuorumPeerMain


    5.10 启动resourcemanager

    根据规划,resourcemanager服务在节点dn-1上面, 在dn-1上面启动resourcemanager:
    1. [hadoop@dn-1 ~]$ /hadoop/hadoop/sbin/yarn-daemon.sh start resourcemanager
    2. starting resourcemanager, logging to /hadoop/hadoop/logs/yarn-hadoop-resourcemanager-dn-1.out

    使用jps, 可以看到进程ResourceManager:
    1. [hadoop@dn-1 ~]$ jps
    2. 57173 QuorumPeerMain
    3. 58317 Jps
    4. 57283 JournalNode
    5. 58270 ResourceManager
    6. 58149 DataNode

    5.11 启动jobhistory

    根据规划, jobhistory服务在nn-1上面, 使用如下命令启动:
    1. [hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/mr-jobhistory-daemon.sh start historyserver
    2. starting historyserver, logging to /hadoop/hadoop/logs/mapred-hadoop-historyserver-nn-1.out

    使用jps, 可以看到进程JobHistoryServer:
    1. [hadoop@nn-1 ~]$ jps
    2. 11210 JobHistoryServer
    3. 9714 JournalNode
    4. 9638 DFSZKFailoverController
    5. 9382 QuorumPeerMain
    6. 11039 NameNode
    7. 11303 Jps

    5.12 启动NodeManager

    根据规划, dn-1、dn-2和dn-3是nodemanager, 在这三个节点启动NodeManager:
    1. [hadoop@dn-1 ~]$ /hadoop/hadoop/sbin/yarn-daemon.sh start nodemanager
    2. starting nodemanager, logging to /hadoop/hadoop/logs/yarn-hadoop-nodemanager-dn-1.out

    使用jps可以看到进程NodeManager:
    1. [hadoop@dn-1 ~]$ jps
    2. 58559 NodeManager
    3. 57173 QuorumPeerMain
    4. 58668 Jps
    5. 57283 JournalNode
    6. 58270 ResourceManager
    7. 58149 DataNode


    6、安装后查看和验证


    6.1 HDFS相关操作命令

    查看NameNode状态的命令
    1. [hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -getServiceState nn-1

    手工切换,将active的NameNode从nn-1切换到nn-2 。
    1. [hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -DfSHAadmin -failover nn-1 nn-2
     
    NameNode健康检查:
    1. [hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -checkHealth nn-1
     将其中一台NameNode给kill后, 查看健康状态:
     


    查看所有的DataNode列表:
    1. [hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs dfsadmin -report | more
     
    查看正常DataNode列表:
    1. [hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs dfsadmin -report -live
    2. 17/03/01 22:49:43 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    3. Configured Capacity: 224954695680 (209.51 GB)
    4. Present Capacity: 180557139968 (168.16 GB)
    5. DFS Remaining: 179963428864 (167.60 GB)
    6. DFS Used: 593711104 (566.21 MB)
    7. DFS Used%: 0.33%
    8. Under replicated blocks: 2
    9. Blocks with corrupt replicas: 0
    10. Missing blocks: 0
    11. -------------------------------------------------
    12. Live datanodes (3):
    13. Name: 192.168.9.23:50010 (dn-1)
    14. Hostname: dn-1
    15. Rack: /rack2
    16. Decommission Status : Normal
    17. Configured Capacity: 74984898560 (69.84 GB)
    18. DFS Used: 197902336 (188.73 MB)
    19. Non DFS Used: 14869356544 (13.85 GB)
    20. DFS Remaining: 59917639680 (55.80 GB)
    21. DFS Used%: 0.26%
    22. DFS Remaining%: 79.91%
    23. Configured Cache Capacity: 0 (0 B)
    24. Cache Used: 0 (0 B)
    25. Cache Remaining: 0 (0 B)
    26. Cache Used%: 100.00%
    27. Cache Remaining%: 0.00%
    28. Xceivers: 1
    29. Last contact: Wed Mar 01 22:49:42 CST 2017

    查看异常DataNode列表:
    1. [hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs dfsadmin -report -dead

    获取指定DataNode信息(运行时间及版本等):
    1. [hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -checkHealth nn-2
    2. 17/03/01 22:55:01 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    3. [hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -checkHealth nn-1
    4. 17/03/01 22:55:08 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable


    6.2 YARN相关的命令

    查看resourceManager状态的命令:
    1. [hadoop@dn-1 hadoop]$ yarn rmadmin -getServiceState rm1
    2. active
    3. [hadoop@dn-1 hadoop]$ yarn rmadmin -getServiceState rm2
    4. standby

    查看所有的yarn节点:
    1. [hadoop@dn-1 hadoop]$ /hadoop/hadoop/bin/yarn node -all -list
    2. 17/03/01 23:06:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    3. Total Nodes:3
    4. Node-Id Node-State Node-Http-Address Number-of-Running-Containers
    5. dn-2:55506 RUNNING dn-2:8042 0
    6. dn-1:56447 RUNNING dn-1:8042 0
    7. dn-3:37533 RUNNING dn-3:8042 0

    查看正常的yarn节点:
    1. [hadoop@dn-1 hadoop]$ /hadoop/hadoop/bin/yarn node -list
    2. 17/03/01 23:07:41 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    3. Total Nodes:3
    4. Node-Id Node-State Node-Http-Address Number-of-Running-Containers
    5. dn-2:55506 RUNNING dn-2:8042 0
    6. dn-1:56447 RUNNING dn-1:8042 0
    7. dn-3:37533 RUNNING dn-3:8042 0

    查看指定节点的信息:
    /hadoop/hadoop/bin/yarn node -status <NodeId>
    1. [hadoop@dn-1 hadoop]$ /hadoop/hadoop/bin/yarn node -status dn-2:55506
    2. 17/03/01 23:08:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    3. Node Report :
    4. Node-Id : dn-2:55506
    5. Rack : /default-rack
    6. Node-State : RUNNING
    7. Node-Http-Address : dn-2:8042
    8. Last-Health-Update : 星期三 01/三月/17 11:06:21:373CST
    9. Health-Report :
    10. Containers : 0
    11. Memory-Used : 0MB
    12. Memory-Capacity : 8192MB
    13. CPU-Used : 0 vcores
    14. CPU-Capacity : 8 vcores
    15. Node-Labels :

    查看当前运行的MapReduce任务:
    1. [hadoop@dn-2 ~]$ /hadoop/hadoop/bin/yarn application -list
    2. 17/03/01 23:10:09 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    3. Total number of applications (application-types: [] and states: [SUBMITTED, ACCEPTED, RUNNING]):1
    4. Application-Id Application-Name Application-Type User Queue State Final-State Progress Tracking-URL
    5. application_1488375590901_0004 QuasiMonteCarlo MAPREDUCE hadoop default RUNNING UNDEFINED


    6.3 使用自带的例子测试

    1. [hadoop@dn-1 ~]$ cd hadoop/
    2. [hadoop@dn-1 hadoop]$
    3. [hadoop@dn-1 hadoop]$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar pi 2 200

    1. [hadoop@dn-1 hadoop]$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar pi 2 200
    2. Number of Maps = 2
    3. Samples per Map = 200
    4. 17/02/28 01:51:12 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    5. Wrote input for Map #0
    6. Wrote input for Map #1
    7. Starting Job
    8. 17/02/28 01:51:15 INFO input.FileInputFormat: Total input paths to process : 2
    9. 17/02/28 01:51:15 INFO mapreduce.JobSubmitter: number of splits:2
    10. 17/02/28 01:51:15 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1488216892564_0001
    11. 17/02/28 01:51:16 INFO impl.YarnClientImpl: Submitted application application_1488216892564_0001
    12. 17/02/28 01:51:16 INFO mapreduce.Job: The url to track the job: http://dn-1:8088/proxy/application_1488216892564_0001/
    13. 17/02/28 01:51:16 INFO mapreduce.Job: Running job: job_1488216892564_0001
    14. 17/02/28 01:51:24 INFO mapreduce.Job: Job job_1488216892564_0001 running in uber mode : false
    15. 17/02/28 01:51:24 INFO mapreduce.Job: map 0% reduce 0%
    16. 17/02/28 01:51:38 INFO mapreduce.Job: map 100% reduce 0%
    17. 17/02/28 01:51:49 INFO mapreduce.Job: map 100% reduce 100%
    18. 17/02/28 01:51:49 INFO mapreduce.Job: Job job_1488216892564_0001 completed successfully
    19. 17/02/28 01:51:50 INFO mapreduce.Job: Counters: 49
    20. File System Counters
    21. FILE: Number of bytes read=50
    22. FILE: Number of bytes written=326922
    23. FILE: Number of read operations=0
    24. FILE: Number of large read operations=0
    25. FILE: Number of write operations=0
    26. HDFS: Number of bytes read=510
    27. HDFS: Number of bytes written=215
    28. HDFS: Number of read operations=11
    29. HDFS: Number of large read operations=0
    30. HDFS: Number of write operations=3
    31. Job Counters
    32. Launched map tasks=2
    33. Launched reduce tasks=1
    34. Data-local map tasks=2
    35. Total time spent by all maps in occupied slots (ms)=25604
    36. Total time spent by all reduces in occupied slots (ms)=7267
    37. Total time spent by all map tasks (ms)=25604
    38. Total time spent by all reduce tasks (ms)=7267
    39. Total vcore-seconds taken by all map tasks=25604
    40. Total vcore-seconds taken by all reduce tasks=7267
    41. Total megabyte-seconds taken by all map tasks=26218496
    42. Total megabyte-seconds taken by all reduce tasks=7441408
    43. Map-Reduce Framework
    44. Map input records=2
    45. Map output records=4
    46. Map output bytes=36
    47. Map output materialized bytes=56
    48. Input split bytes=274
    49. Combine input records=0
    50. Combine output records=0
    51. Reduce input groups=2
    52. Reduce shuffle bytes=56
    53. Reduce input records=4
    54. Reduce output records=0
    55. Spilled Records=8
    56. Shuffled Maps =2
    57. Failed Shuffles=0
    58. Merged Map outputs=2
    59. GC time elapsed (ms)=419
    60. CPU time spent (ms)=6940
    61. Physical memory (bytes) snapshot=525877248
    62. Virtual memory (bytes) snapshot=2535231488
    63. Total committed heap usage (bytes)=260186112
    64. Shuffle Errors
    65. BAD_ID=0
    66. CONNECTION=0
    67. IO_ERROR=0
    68. WRONG_LENGTH=0
    69. WRONG_MAP=0
    70. WRONG_REDUCE=0
    71. File Input Format Counters
    72. Bytes Read=236
    73. File Output Format Counters
    74. Bytes Written=97
    75. Job Finished in 35.466 seconds
    76. Estimated value of Pi is 3.17000000000000000000

    6.4 查看NameNode

     链接分别为:

    192.168.9.21和192.168.9.22分别为NameNode和Secondary NameNode的地址。
     
     



    6.5 查看NameNode 的HA切换是否正常

    将nn-1上状态为active的NameNode进程kill, 查看nn-2上的NameNode能否从standby切换为active:
     

     


    6.6 查看RM页面


    其中192.168.9.23为Resource服务所在的节点。
     



    7、安装Spark


    规划, 在现有的Hadoop集群安装spark集群:
    master节点: nn-1
    worker节点: nn-2、dn-1、dn-2、dn-3。

    7.1 安装配置Scala

    上传安装包到nn-1的/hadoop目录下面,解压:
    1. [hadoop@nn-1 ~]$ tar -xzvf spark-1.6.0-bin-hadoop2.6.tgz
    环境变量后面统一配置。

    7.2 安装spark


    上传安装包spark-1.6.0-bin-hadoop2.6.tgz到nn-1的目录/hadoop下面, 解压
    1. [hadoop@nn-1 ~]$ tar -xzvf spark-1.6.0-bin-hadoop2.6.tgz

    进入目录:/hadoop/spark-1.6.0-bin-hadoop2.6/conf
    复制生成文件spark-env.sh和slaves:
    1. [hadoop@nn-1 conf]$ pwd
    2. /hadoop/spark-1.6.0-bin-hadoop2.6/conf
    3. [hadoop@nn-1 conf]$ cp spark-env.sh.template spark-env.sh
    4. [hadoop@nn-1 conf]$ cp slaves.template slaves
    编辑spark-env.sh, 加入如下内容:
    1. export JAVA_HOME=/usr/local/java/jdk1.7.0_79
    2. export SCALA_HOME=/hadoop/scala-2.11.7
    3. export SPARK_HOME=/hadoop/spark-1.6.0-bin-hadoop2.6
    4. export SPARK_MASTER_IP=nn-1
    5. export SPARK_WORKER_MEMORY=2g
    6. export HADOOP_CONF_DIR=/hadoop/hadoop/etc/hadoop
    SPARK_WORKER_MEMORY根据实际情况配置。

    编辑spark-env.sh, 加入如下内容:slaves
    1. nn-2
    2. dn-1
    3. dn-2
    4. dn-3
    slaves指定的是worker节点。

    7.3 配置环境变量

    1. [hadoop@nn-1 ~]$ vim .bash_profile
    追加如下内容:
    1. export HADOOP_HOME=/hadoop/hadoop
    2. export SCALA_HOME=/hadoop/scala-2.11.7
    3. export SPARK_HOME=/hadoop/spark-1.6.0-bin-hadoop2.6
    4. export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$SCALA_HOME/bin:$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH

    7.4 分发上面配置好的scala和spark目录到其他节点

    1. [hadoop@nn-1 bin]$ cd /hadoop
    2. [hadoop@nn-1 ~]$ scp -rp spark-1.6.0-bin-hadoop2.6 hadoop@dn-1:/hadoop
    3. [hadoop@nn-1 ~]$ scp -rp scala-2.11.7 hadoop@dn-1:/hadoop

    7.5 启动Spark集群

    1. [hadoop@nn-1 ~]$ /hadoop/spark-1.6.0-bin-hadoop2.6/sbin/start-all.sh

    在nn-1和其他slaves节点查看进程:
    在nn-1节点, 可以看到Master进程:
    1. [hadoop@nn-1 ~]$ jps
    2. 2473 JournalNode
    3. 2541 NameNode
    4. 4401 Jps
    5. 2399 DFSZKFailoverController
    6. 2687 JobHistoryServer
    7. 2775 Master
    8. 2351 QuorumPeerMain

    slaves节点可以看到Worker进程:
    1. [hadoop@dn-1 ~]$ jps
    2. 2522 NodeManager
    3. 3449 Jps
    4. 2007 QuorumPeerMain
    5. 2141 DataNode
    6. 2688 Worker
    7. 2061 JournalNode
    8. 2258 ResourceManager

    查看spark页面:

     

    7.6 运行测试案例

    ./bin/spark-submit --class org.apache.spark.examples.SparkPi 

                       --master yarn --deploy-mode cluster 

                       --driver-memory 100M

                       --executor-memory 200M

                       --executor-cores 1 

                       --queue default 

                       lib/spark-examples*.jar 10

    或者:

    ./bin/spark-submit --class org.apache.spark.examples.SparkPi 

                       --master yarn --deploy-mode cluster 

                       --executor-cores 1 

                       --queue default 

                       lib/spark-examples*.jar 10


     
     
     



    8、配置机架感知

    在nn-1和nn-2节点的配置文件/hadoop/hadoop/etc/hadoop/core-site.xml加入如下配置:
    1. <property>
    2. <name>topology.script.file.name</name>
    3. <value>/hadoop/hadoop/etc/hadoop/RackAware.py</value>
    4. </property>
    新增文件:/hadoop/hadoop/etc/hadoop/RackAware.py,内容如下:
    1. #!/usr/bin/python
    2. #-*-coding:UTF-8 -*-
    3. import sys
    4. rack = {"dn-1":"rack2",
    5. "dn-2":"rack1",
    6. "dn-3":"rack1",
    7. "192.168.9.23":"rack2",
    8. "192.168.9.24":"rack1",
    9. "192.168.9.25":"rack1",
    10. }
    11. if __name__=="__main__":
    12. print "/" + rack.get(sys.argv[1],"rack0")
    设置权限:
    1. [root@nn-1 hadoop]# chmod +x RackAware.py
    2. [root@nn-1 hadoop]# ll RackAware.py
    3. -rwxr-xr-x 1 hadoop hadoop 294 3 1 21:24 RackAware.py

    重启nn-1和nn-2上的NameNode服务:
    1. [hadoop@nn-1 ~]$ hadoop-daemon.sh stop namenode
    2. stopping namenode
    3. [hadoop@nn-1 ~]$ hadoop-daemon.sh start namenode
    4. starting namenode, logging to /hadoop/hadoop/logs/hadoop-hadoop-namenode-nn-1.out

    查看日志:
    1. [root@nn-1 logs]# pwd
    2. /hadoop/hadoop/logs
    3. [root@nn-1 logs]# vim hadoop-hadoop-namenode-nn-1.log

     


    使用命令查看拓扑:
    1. [hadoop@dn-3 ~]$ hdfs dfsadmin -printTopology
    2. 17/03/02 00:21:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    3. Rack: /rack1
    4. 192.168.9.24:50010 (dn-2)
    5. 192.168.9.25:50010 (dn-3)
    6. Rack: /rack2
    7. 192.168.9.23:50010 (dn-1)







  • 相关阅读:
    创建一个新的进程os.fork
    进程的特征
    进程的状态
    多进程概念
    IO多路复用
    Objective-C 和 C++中指针的格式和.方法 和内存分配
    生活需要奋斗的目标
    iOS 关于UITableView的dequeueReusableCellWithIdentifier
    哈哈,发现了刚毕业时发布的求职帖子
    iOS 和Android中的基本日期处理
  • 原文地址:https://www.cnblogs.com/xiaohe001/p/6484468.html
Copyright © 2020-2023  润新知