• 无聊做做数学题系列1


    如图所示,

    已知AB = AC,∠ABD = 20°,∠ACE = 30°,∠CBD = 50°,∠BCE = 60°

    求∠BDE

     

    看上去貌似是个初中级别的题,应该也有初中级别的解法,不过懒得去找|||- -

    于是直接进行暴力求解

    (1)

    ∠BAD = 180° - 80° - 80° = 20° =>

    ∠BAD = ∠ABD =>

    AD = BD

    (2)

    ∠BEC = 180° - 80° - 50° = 50° =>

    ∠BEC =∠BCE =>

    BC = BE

    (3)

    为了简便起见,我们假设

    AB = AC = m

    另外,由于后续涉及到正弦和余弦计算,故统一改用弧度

    ∠ADB = π - π/9 - π/9 = 7π/9

    设∠EDB = x, 则

    ∠BED = π - π/9 - x = 8π/9 - x

    (4)

    对三角形ABC使用正弦定理,可知

    sin∠ABC / AC = sin∠BAC / BC

    由于AC=m,故

    BC = BE

    = m * sin(π/9) / sin(4π/9)

    (5)

    对三角形ABD使用正弦定理,可知

    sin∠ADB / AB = sin∠ABD / AD

    由于AB = m,故

    AD = BD

    = m * sin(π/9) / sin(7π/9)

    (6)

    对三角形BDE使用正弦定理,可知

    sin∠BDE / BE = sin∠BED / BD

    结合(1)(2)(3)(4)(5),即可以得到

    sin (x) / (m * sin(π/9) / sin(4π/9)) = 

    sin(8π/9 - x) / (m * sin(π/9) / sin(7π/9))

    整理一下得到

    sin(4π/9)* sin(x) = sin(7π/9)* sin(8π/9 - x)

    再利用两角和公式把sin(8π/9 - x)展开,得到

    sin(4π/9)* sin(x) = sin(7π/9)* (sin(8π/9)cos(x) - cos(8π/9)sin(x))

    把sin(x)的项移到左边,cos(x)的项移到右边,得到

    sin(x)* (sin(4π/9)+ cos(8π/9)) = cos(x)sin(7π/9)sin(8π/9)

    tan(x) = sin(7π/9)sin(8π/9)/ (sin(4π/9)+ cos(8π/9))

    (7)

    如果此时直接把结果写成arctan XXX,貌似也不能算错。

    不过在这个场景下,结果还可以继续化简。

    tan(x) = sin(7π/9)sin(8π/9)/ (sin(4π/9)+ cos(8π/9))

    = sin(π - 2π/9)sin(π - π/9)/ (sin(4π/9)+ sin(π - 2π/9)cos(π - π/9))

    利用 sin(π - α)= sin(α),以及 cos(π - α)= - cos(α),可以得到

    tan(x)= sin(2π/9)sin(π/9)/ (sin(4π/9)- sin(2π/9) cos(π/9))

    (8)

    以下需要用到一些小技巧,核心思想是把结果尽可能地用π/3或者π/6来表示,

    由于π/3(60°)和π/6(30°)的正弦和余弦值是要求背出来的,就能达到化简的目的。

    为了简便起见,令α = π/9,则

    2α = 2π/9 = π/3 - π/9 = π/3 - α

    4π/9 = π/3 + π/9 = π/3 + α

    于是(7)中的式子化为:

    tan(x)= sin(π/3 - α) sin(α)/ (sin(π/3 + α)- sin(π/3 - α)cos(α))

    利用两角和公式将其展开,得到

    tan(x)= (√3/2 * sin(α)cos(α)- 1/2 * sin^2(α)) / (√3/2 * cos(α)+ 1/2 * sin(α) -  √3/2 * cos^2(α)+ 1/2 * sin(α) cos(α))

    其中二次项sin^2(α)、cos^2(α)和 sin(α) cos(α),分别用降幂公式和二倍角公式化成2α形式,再用2α = π/3 - α去代换如下:

    sin^2(α) = (1 -  cos(2α))/ 2 = (1 -  cos(π/3 - α))/ 2 = 1/2 - 1/4 *  cos(α) - √3/4 * sin(α)

    cos^2(α) = (1 +  cos(2α))/ 2 = (1 +  cos(π/3 - α))/ 2 = 1/2 + 1/4 *  cos(α) + √3/4 * sin(α)

    sin(α) cos(α) = sin(2α)/ 2 = sin(π/3 - α)/ 2 = √3/4 * cos(α)- 1/4 *  sin(α)

    把这三个结果代入,再合并同类项,得到

    tan(x) = (3/8 * cos(α)- √3/8 * sin(α) - 1/4 + 1/8 *  cos(α)+ √3/8 * sin(α)) / (√3/2 * cos(α)+ 1/2 * sin(α) -  √3/4 -  √3/8 * cos(α) - 3/8 * sin(α)+ √3/8 *  cos(α) - 1/8 * sin(α))

    = (1/2 * cos(α)- 1/4) / (√3/2 * cos(α)-  √3/4)

    = ((1/4) * (2 * cos(α)- 1)) / ((√3/4)*(2 * cos(α)-  1))

    非常凑巧,这个除法式子里面,恰好可以上下同时约掉一个2 * cos(α)- 1

    于是得到

    tan(x) = 1/√3 = √3/3

    稍微有点基础的同学们应该一眼就可以看出,

    x = π/6 , 也就是30°

    ======================================================

    小结:

    此题主要的知识点有:

    (1)最基本的初中几何知识;

    (2)正弦定理;

    (3)两角和公式,包括积化和差、和差化积、二倍角等;

    (4)降幂公式;

    (5)常见角(如π/3和π/6)的正弦、余弦、正切等值;

    (6)遇到正弦、余弦不太好表示的角,想办法将其转化成与常见角的和差关系;

     

  • 相关阅读:
    转:单链表有环判断及其起始位置定位
    转:C++经典排序算法总结
    转:堆排序
    转载:C++快速排序
    转载:平衡二叉树(AVL Tree)
    设计模式原则
    适配器模式
    单例模式
    工厂模式
    Head First设计模式 装饰者模式
  • 原文地址:https://www.cnblogs.com/xczyd/p/7931904.html
Copyright © 2020-2023  润新知