You have n boxes in a line on the table numbered 1 . . . n from left to right. Your task is to simulate 4
kinds of commands:
• 1 X Y : move box X to the left to Y (ignore this if X is already the left of Y )
• 2 X Y : move box X to the right to Y (ignore this if X is already the right of Y )
• 3 X Y : swap box X and Y
• 4: reverse the whole line.
Commands are guaranteed to be valid, i.e. X will be not equal to Y .
For example, if n = 6, after executing 1 1 4, the line becomes 2 3 1 4 5 6. Then after executing
2 3 5, the line becomes 2 1 4 5 3 6. Then after executing 3 1 6, the line becomes 2 6 4 5 3 1.
Then after executing 4, then line becomes 1 3 5 4 6 2
Input
There will be at most 10 test cases. Each test case begins with a line containing 2 integers n, m
(1 ≤ n, m ≤ 100, 000). Each of the following m lines contain a command.
Output
For each test case, print the sum of numbers at odd-indexed positions. Positions are numbered 1 to n
from left to right.
Sample Input
6 4
1 1 4
2 3 5
3 1 6
4
6 3
1 1 4
2 3 5
3 1 6
100000 1
4
Sample Output
Case 1: 12
Case 2: 9
Case 3: 2500050000
四种操作,1把x移到y左边,2把x移到y右边,3交换xy,4逆转链表;
用数组模拟链表,用LEFT和RIGHT两个数组储存每一个数字左右两边的数字是什么
如果有经过一次4,那个做个标记,后面有操作1,2就要交换,1要变成2,2要变成1,3没影响,对他们的左右连接改动就好了,和链表的操作一样
吐槽一句,刘汝佳有毒啊,他书上的代码会wa,后面还是自己写出来过的
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
//#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
typedef long double ld;
typedef double db;
const ll mod=1e9+100;
const db e=exp(1);
using namespace std;
const double pi=acos(-1.0);
int n,LEFT[100010],RIGHT[100010];
void link(int x,int y)
{
LEFT[y]=x;
RIGHT[x]=y;
}
int main()
{
int m,kase=0;
while(sf("%d%d",&n,&m)!=EOF)
{
rep(i,1,n+1)
{
LEFT[i]=i-1;
RIGHT[i]=(i+1)%(n+1);
}
RIGHT[0]=1;LEFT[0]=n;
int op,x,y,temp=0;
while(m--)
{
sf("%d",&op);
if(op==4) temp=!temp;
else
{
sf("%d%d",&x,&y);
if(op==3&&RIGHT[y]==x) swap(x,y);
if(op!=3&&temp) op=3-op;
int lx=LEFT[x],rx=RIGHT[x],ly=LEFT[y],ry=RIGHT[y];
if(op==1)
{
if(LEFT[y]!=x)
{
if(RIGHT[y]==x)
{
link(y,rx);link(ly,x);link(x,y);
}else
{
link(lx,rx);link(x,y);link(ly,x);
}
}
}else if(op==2)
{
if(RIGHT[y]!=x)
{
if(LEFT[y]==x)
{
link(lx,y);link(y,x);link(x,ry);
}else
{
link(lx,rx);link(y,x);link(x,ry);
}
}
}else if(op==3)
{
if(RIGHT[x]==y)
{
link(lx,y);link(y,x);link(x,ry);
}else if(RIGHT[y]==x)
{
link(ly,x);link(x,y);link(y,rx);
}else
{
link(lx,y);link(y,rx);link(ly,x);link(x,ry);
}
}
}
}
int b=0;
ll ans=0;
rep(i,1,n+1)
{
b=RIGHT[b];
if(i%2==1) ans+=b;
}
if(temp&&n%2==0) ans=(ll)n*(n+1)/2-ans;
pf("Case %d: %lld
",++kase,ans);
}
return 0;
}