• hdu2767之强联通缩点


    Proving Equivalences

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2768    Accepted Submission(s): 1038


    Problem Description
    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove?

    Can you help me determine this?

     

    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
     

    Output
    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
     

    Sample Input
    2 4 0 3 2 1 2 1 3
     

    Sample Output
    4 2
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <string>
    #include <queue>
    #include <algorithm>
    #include <map>
    #include <cmath>
    #include <iomanip>
    #define INF 99999999
    typedef long long LL;
    using namespace std;
    
    const int MAX=20000+10;
    int n,m,size,top,index,ind,oud;
    int head[MAX],dfn[MAX],low[MAX],stack[MAX];
    int mark[MAX],flag[MAX];
    //dfn表示点u出现的时间,low表示点u能到达所属环中最早出现的点(记录的是到达的时间) 
    
    struct Edge{
    	int v,next;
    	Edge(){}
    	Edge(int V,int NEXT):v(V),next(NEXT){}
    }edge[50000+10];
    
    void Init(int num){
    	for(int i=0;i<=num;++i)head[i]=-1;
    	size=top=index=ind=oud=0;
    }
    
    void InsertEdge(int u,int v){
    	edge[size]=Edge(v,head[u]);
    	head[u]=size++;
    }
    
    void tarjan(int u){
    	if(mark[u])return;
    	dfn[u]=low[u]=++index;
    	stack[++top]=u;
    	mark[u]=1;
    	for(int i=head[u];i != -1;i=edge[i].next){
    		int v=edge[i].v;
    		tarjan(v);
    		if(mark[v] == 1)low[u]=min(low[u],low[v]);//必须点v在栈里面才行 
    	}
    	if(dfn[u] == low[u]){
    		++ind,++oud;//计算缩点后点的个数,方便计算入度和出度
    		while(stack[top] != u){
    			mark[stack[top]]=-1;
    			low[stack[top--]]=low[u];
    		}
    		mark[u]=-1;
    		--top;
    	}
    }
    
    int main(){
    	int t,u,v;
    	scanf("%d",&t);
    	while(t--){
    		scanf("%d%d",&n,&m);
    		Init(n);
    		for(int i=0;i<m;++i){
    			scanf("%d%d",&u,&v);
    			InsertEdge(u,v);
    		}
    		memset(mark,0,sizeof mark);
    		for(int i=1;i<=n;++i){
    			if(mark[i])continue;
    			tarjan(i);//tarjan用来缩点 
    		}
    		if(ind == 1){cout<<0<<endl;continue;} 
    		for(int i=0;i<=n;++i)mark[i]=flag[i]=0;
    		for(int i=1;i<=n;++i){
    			for(int j=head[i];j != -1;j=edge[j].next){
    				v=edge[j].v;
    				if(low[i] == low[v])continue;
    				if(mark[low[i]] == 0)--oud;//mark标记点u是否有出度
    				if(flag[low[v]] == 0)--ind;//flag标记点u是否有入度
    				mark[low[i]]=1,flag[low[v]]=1; 
    			}
    		}
    		printf("%d
    ",max(oud,ind));
    	}
    	return 0;
    }



  • 相关阅读:
    常用的网站cms内容管理系统推荐
    PageAdmin网站内容管理系统出现403错误的解决方法
    使用PageAdmin网站内容管理系统做网站的好处
    网站建设步骤及常用建站系统分享
    企业网站建设如何选择建站公司
    如何采用PageAdmin自助建站系统来进行企业网站建设
    站群系统-站群软件系统推荐
    js计算之递归
    算法之插入排序
    javaScript设计模式之常用工厂模式
  • 原文地址:https://www.cnblogs.com/wzjhoutai/p/6776133.html
Copyright © 2020-2023  润新知