problem
给定(n,p,w,d),求解任意一对((x,y))满足$$xw+yd=p x + y le n$$
(1le nle 10^{12},0le ple 10^{17},1le d<w le 10^5)
solution
注意到(n,p)非常大,(w,d)比较小。而且(w>d)。所以我们就想让(y)尽量小。
实际上如果最终有解,那在(yle w)中肯定有解。
证明如下:
如果有(y'=aw+k(age 1,0le k < w))使得(xw+y'd=p)。即(xw+(aw+k)d=xw+awd+kd=(x+ad)w+kd=p)。
发现(xw+(aw+k)d)的系数和为(x+aw+k)。((x+ad)w+kd)的系数和为(x+ad+k)。又因为(w>d)。所以后者的系数和要小。所以(d)的系数一定小于等于(w)
然后在区间([0,w])中枚举(y)。计算(x)即可。
code
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
#include<cmath>
#include<map>
#include<string>
using namespace std;
typedef long long ll;
ll read() {
ll x = 0,f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0',c = getchar();}
return x * f;
}
int main() {
ll n = read(),p = read(),w = read(),d = read();
for(ll y = 0;y <= w;++y) {
if((p - y * d) % w) continue;
ll x = (p - y * d) / w;
if(x >= 0 && x + y <= n) {
printf("%I64d %I64d %I64d
",x,y,n - x - y);
return 0;
}
}
puts("-1");
return 0;
}