• 目标双站定位仿真C++代码


    point-position2 初步完善版。

    不再使用eigen库,行列式直接计算得出结果。判断共面异面分别处理。

    先提取双站获得图像的匹配特征点,由双站位置信息解析目标位置。

    // point-position2.cpp : 定义控制台应用程序的入口点。
    #include "stdafx.h"
    #include <stdio.h>
    #include <iostream>
    #include "opencv2/core/core.hpp"
    #include "opencv2/features2d/features2d.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include <opencv2/nonfree/features2d.hpp>
    #include "opencv2/imgproc/imgproc.hpp"
    #include "opencv2/nonfree/nonfree.hpp"
    #include "opencv2/legacy/legacy.hpp"
    #include<math.h>
    using namespace cv;
    
    int main( int argc, char** argv )
    {
    
        Mat img_1 = imread("book_in_scene.png");
        Mat img_2 = imread("book2.png");
    
        if( !img_1.data || !img_2.data )
        { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
    
        //-- Step 1: Detect the keypoints using SURF Detector
        int minHessian = 400;
    
        SiftFeatureDetector detector( minHessian );
        //SurfFeatureDetector detector( minHessian );
    
        vector<KeyPoint> keypoints_1, keypoints_2;
    
        detector.detect( img_1, keypoints_1 );
        detector.detect( img_2, keypoints_2 );
    
        //-- Step 2: Calculate descriptors (feature vectors)
        SiftDescriptorExtractor extractor;
        //SurfDescriptorExtractor extractor;
    
        Mat descriptors_1, descriptors_2;
    
        extractor.compute( img_1, keypoints_1, descriptors_1 );
        extractor.compute( img_2, keypoints_2, descriptors_2 );
    
        //-- Step 3: Matching descriptor vectors using FLANN matcher
        FlannBasedMatcher matcher;
        std::vector< DMatch > matches;
        matcher.match( descriptors_1, descriptors_2, matches );
    
        double max_dist = 0; double min_dist = 100;
    
        //-- Quick calculation of max and min distances between keypoints
        for( int i = 0; i < descriptors_1.rows; i++ )
        { double dist = matches[i].distance;
        if( dist < min_dist ) min_dist = dist;
        if( dist > max_dist ) max_dist = dist;
        }
    
        //printf("-- Max dist : %f 
    ", max_dist );
        //printf("-- Min dist : %f 
    ", min_dist );
    
        //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
        //-- PS.- radiusMatch can also be used here.
        std::vector< DMatch > good_matches;
    
        for( int i = 0; i < descriptors_1.rows; i++ )
        { if( matches[i].distance < 2*min_dist )
        { good_matches.push_back( matches[i]); }
        }
    
        //-- Draw only "good" matches
        Mat img_matches;
        drawMatches( img_1, keypoints_1, img_2, keypoints_2,
            good_matches, img_matches
            );
    
        //-- Show detected matches
        //imshow( "Good Matches", img_matches );
        //imwrite("Lena_match_surf.jpg",img_matches);
        //imwrite("Lena_match_sift.jpg",img_matches);
        //good_matches[i].queryIdx保存着第一张图片匹配点的序号,keypoints_1[good_matches[i].queryIdx].pt.x 为该序号对应的点的x坐标。y坐标同理
        //good_matches[i].trainIdx保存着第二张图片匹配点的序号,keypoints_2[good_matches[i].trainIdx].pt.x 为为该序号对应的点的x坐标。y坐标同理
        printf( "--Keypoint 1:%f,%f: %d  -- Keypoint 2:%f,%f: %d  
    ",  
            keypoints_1[good_matches[0].queryIdx].pt.x,keypoints_1[good_matches[0].queryIdx].pt.y,good_matches[0].queryIdx, 
            keypoints_2[good_matches[0].trainIdx].pt.x,keypoints_2[good_matches[0].trainIdx].pt.y,good_matches[0].trainIdx );
        /*_______________________________________________________________________________________________________________________________*/
    
        double x_inImage1,y_inImage1,x_inImage2,y_inImage2,y,X,Y,alpha,gamma;//像面坐标(x,y)和图像尺寸(X,Y)以及成像视场角(alpha,gamma)
        double x1,y1,z1,x2,y2,z2;//双站坐标
        double alpha1,gamma1;//双站俯仰角和偏转角
        double alpha2,gamma2;
        
        //赋予初始值
        alpha1=45;
        gamma1=45;
        alpha2=270;
        gamma2=45;
    
    
        X=640;
        Y=480;
        double FOVx=10;
        double FOVy=FOVx*Y/X;
        x1=0,y1=0,z1=0;
        x2=0,y2=200,z2=0;
    
    /*    //测角偏差补偿
        x_inImage1=keypoints_1[good_matches[0].queryIdx].pt.x;//目标点坐标由匹配所得
        y_inImage1=keypoints_1[good_matches[0].queryIdx].pt.y;
        x_inImage2=keypoints_2[good_matches[0].queryIdx].pt.x;
        y_inImage2=keypoints_2[good_matches[0].queryIdx].pt.y;
    
        double deviation_alpha1=(x_inImage1-X/2)/X*FOVx;
        double deviation_alpha2=(x_inImage2-X/2)/X*FOVx;
        double deviation_gamma1=(y_inImage1-Y/2)/X*FOVy;
        double deviation_gamma2=(y_inImage2-Y/2)/X*FOVy;
    
        alpha1=alpha1+deviation_alpha1;
        alpha2=alpha2+deviation_alpha2;
        gamma1=gamma1+deviation_gamma1;
        gamma2=gamma2+deviation_gamma2;
    */
        //开始计算
        double pi=16*(atan(1.0/5))-4*atan(1.0/239);//精确定义圆周率
        std::cout<<"pi为:"<<pi<<std::endl;
        alpha1=alpha1*pi/180;//角度弧度转换
        gamma1=gamma1*pi/180;
        alpha2=alpha2*pi/180;
        gamma2=gamma2*pi/180;
    
    //    std::cout<<"cos(alpha1)为:"<<cos(alpha1)<<std::endl;
    //    std::cout<<"cos(gamma1)为:"<<cos(gamma1)<<std::endl;
        double m1=(cos(alpha1))*(cos(gamma1));
        double n1=(sin(alpha1))*(cos(gamma1));
        double p1=sin(gamma1);
        double m2=(cos(alpha2))*(cos(gamma2));
        double n2=(sin(alpha2))*(cos(gamma2));
        double p2=sin(gamma2);
    
        std::cout<<"方向向量1为:"<<m1<<""<<n1<<""<<p1<<std::endl;
        std::cout<<"方向向量2为:"<<m2<<""<<n2<<""<<p2<<std::endl;
    
        double coplane;//共面判断
        coplane=(x2-x1)*(n1*p2-n2*p1)-(y2-y1)*(m1*p2-m2*p1)+(z2-z1)*(m1*n2-m2*n1);//coplane=0共面
        if(coplane)
        {
            //计算公垂线方向向量A1、B1、C1
            double A1=n1*p2-n2*p1;
            double B1=p1*m2-p2*m1;
            double C1=m1*n2-m2*n1;
            //
            double A2=n2*C1-p2*B1;
            double B2=p2*A1-m2*C1;
            double C2=m2*B1-n2*A1;
    
            double A3=n1*C1-p1*B1;
            double B3=p1*A1-m1*C1;
            double C3=m1*B1-n1*A1;
    
            double delta1=n1*(B1*C2-B2*C1)+m1*(A1*C2-A2*C1);
            double delta2=n2*(B1*C3-B3*C1)+m2*(A1*C3-A3*C1);
            double D1=A2*(x2-x1)+B2*(y2-y1)+C2*(z2-z1);
            double D2=A3*(x1-x2)+B3*(y1-y2)+C3*(z1-z2);
    
            double Xg,Yg,Zg,Xh,Yh,Zh,Xtarget,Ytarget,Ztarget;//两直线垂足G和H点坐标,目标点在其中点位置。
            Xg=x1-(D1*m1*C1)/delta1;
            Yg=y1-(D1*n1*C1)/delta1;
            Zg=z1+D1*(A1*m1+B1*n1)/delta1;
            Xh=x2-(D2*m2*C1)/delta2;
            Yh=y2-(D2*n2*C1)/delta2;
            Zh=z2+D2*(A1*m2+B1*n2)/delta2;
    
            Xtarget=(Xg+Xh)/2;
            Ytarget=(Yg+Yh)/2;
            Ztarget=(Zg+Zh)/2;
    
            std::cout<<"目标坐标为:"<<Xtarget<<""<<Ytarget<<""<<Ztarget<<std::endl<<std::endl;
        }
        else//两线共面且相交,引入参数t
        {
            double t;
            t=(p2*(y1-y2)+n2*(z2-z1))/(n2*p1-p2*n1);
            double Xtarget,Ytarget,Ztarget;
            Xtarget=x1+m1*t;
            Ytarget=y1+n1*t;
            Ztarget=z1+p1*t;
            std::cout<<"目标坐标为:"<<Xtarget<<""<<Ytarget<<""<<Ztarget<<std::endl<<std::endl;
        }
        getchar();
        //waitKey(0);
        return 0;
    }
  • 相关阅读:
    String 尺取法
    dos 命令
    又见01背包
    01串
    Python-Matplotlib 10 面向对象 VS Matlab Style
    [ 转 ] Fiddler 教程
    Android 查看设备文件
    Python-Matplotlib 9 颜色和样式 [r]
    Python-Matplotlib 8 箱形图
    Python-Matplotlib 7 饼状图
  • 原文地址:https://www.cnblogs.com/wxl845235800/p/9125006.html
Copyright © 2020-2023  润新知