Drainage Ditches |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 49 Accepted Submission(s): 41 |
Problem Description
Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. |
Input
The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
|
Output
For each case, output a single integer, the maximum rate at which water may emptied from the pond. |
Sample Input
5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10 |
Sample Output
50 |
Source
USACO 93
|
Recommend
lwg
|
/* 题意:现在有m个池塘(从1到m开始编号,1为源点,m为汇点),及n条有向水渠,给出这n条水渠所连接的点和所能 流过的最大流量,求从源点到汇点能流过的最大流量。 初步思路:最大流的模板题 #T了:我去,套板的题竟然T了,换成了vector的板还是靠谱的过了 */ #include<bits/stdc++.h> #define INF 1e9 using namespace std; const int maxn=200+5;//之前这里只写10+5,一直TLE,真是悲剧 struct Edge { Edge(){} Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow){} int from,to,cap,flow; }; struct Dinic { int n,m,s,t; //结点数,边数(包括反向弧),源点与汇点编号 vector<Edge> edges; //边表 edges[e]和edges[e^1]互为反向弧 vector<int> G[maxn]; //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号 bool vis[maxn]; //BFS使用,标记一个节点是否被遍历过 int d[maxn]; //从起点到i点的距离 int cur[maxn]; //当前弧下标 void init(int n,int s,int t) { this->n=n,this->s=s,this->t=t; for(int i=1;i<=n;i++) G[i].clear(); edges.clear(); } void AddEdge(int from,int to,int cap) { edges.push_back( Edge(from,to,cap,0) ); edges.push_back( Edge(to,from,0,0) ); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS() { memset(vis,0,sizeof(vis)); queue<int> Q;//用来保存节点编号的 Q.push(s); d[s]=0; vis[s]=true; while(!Q.empty()) { int x=Q.front(); Q.pop(); for(int i=0; i<G[x].size(); i++) { Edge& e=edges[G[x][i]]; if(!vis[e.to] && e.cap>e.flow) { vis[e.to]=true; d[e.to] = d[x]+1; Q.push(e.to); } } } return vis[t]; } int DFS(int x,int a) { if(x==t || a==0)return a; int flow=0,f;//flow用来记录从x到t的最小残量 for(int& i=cur[x]; i<G[x].size(); i++) { Edge& e=edges[G[x][i]]; if(d[x]+1==d[e.to] && (f=DFS( e.to,min(a,e.cap-e.flow) ) )>0 ) { e.flow +=f; edges[G[x][i]^1].flow -=f; flow += f; a -= f; if(a==0) break; } } return flow; } int Maxflow() { int flow=0; while(BFS()) { memset(cur,0,sizeof(cur)); flow += DFS(s,INF); } return flow; } }DC; int main(){ // freopen("in.txt","r",stdin); int n,m; while(scanf("%d%d",&m,&n)==2){ DC.init(n,1,n); for(int i=0;i<m;i++){ int u,v,w; scanf("%d%d%d",&u,&v,&w); DC.AddEdge(u,v,w); } printf("%d ",DC.Maxflow()); } return 0; }