• ConcurrentHashMap源码解析(JDK1.8)


    package java.util.concurrent;
    
    import java.io.ObjectStreamField;
    import java.io.Serializable;
    import java.lang.reflect.ParameterizedType;
    import java.lang.reflect.Type;
    import java.util.*;
    import java.util.concurrent.atomic.AtomicReference;
    import java.util.concurrent.locks.LockSupport;
    import java.util.concurrent.locks.ReentrantLock;
    import java.util.function.*;
    import java.util.stream.Stream;
    
    
    public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
            implements ConcurrentMap<K, V>, Serializable {
        private static final long serialVersionUID = 7249069246763182397L;
    
    
        /* ---------------- Constants -------------- */
    
        /**
         * node数组最大容量
         */
        private static final int MAXIMUM_CAPACITY = 1 << 30;
    
    
        /**
         * 默认初始值,必须是2的幂数
         */
        private static final int DEFAULT_CAPACITY = 16;
    
        /**
         * 数组可能最大值,需要与toArray()相关方法关联
         */
        static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    
        /**
         * 并发级别,遗留下来的,为兼容以前的版本
         */
        private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    
        /**
         * 负载因子
         */
        private static final float LOAD_FACTOR = 0.75f;
    
        /**
         * 链表转树的阀值,如果table[i]下面的链表长度大于8时就转化为数
         */
        static final int TREEIFY_THRESHOLD = 8;
    
        /**
         * 树转链表的阀值,小于等于6是转为链表,仅在扩容tranfer时才可能树转链表
         */
        static final int UNTREEIFY_THRESHOLD = 6;
    
        /**
         * 在转变成树之前,还会有一次判断,只有键值对数量大于 64 才会发生转换。
         * 这是为了避免在哈希表建立初期,多个键值对恰好被放入了同一个链表中而导致不必要的转化。
         */
        static final int MIN_TREEIFY_CAPACITY = 64;
    
        /**
         * Minimum number of rebinnings per transfer step. Ranges are
         * subdivided to allow multiple resizer threads.  This value
         * serves as a lower bound to avoid resizers encountering
         * excessive memory contention.  The value should be at least
         * DEFAULT_CAPACITY.
         */
        private static final int MIN_TRANSFER_STRIDE = 16;
    
        /**
         * The number of bits used for generation stamp in sizeCtl.
         * Must be at least 6 for 32bit arrays.
         */
        private static int RESIZE_STAMP_BITS = 16;
    
        /**
         * 2^15-1,help resize的最大线程数
         */
        private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
    
        /**
         * 32-16=16,sizeCtl中记录size大小的偏移量
         */
        private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
    
        /*
         * Encodings for Node hash fields. See above for explanation.
         */
        static final int MOVED = -1; // hash for forwarding nodes (forwarding nodes的hash值)、标示位
        static final int TREEBIN = -2; // hash值是-2  表示这是一个TreeBin节点
        static final int RESERVED = -3; // hash for transient reservations
        static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash (ReservationNode的hash值)
    
        /**
         * 可用处理器数量
         */
        static final int NCPU = Runtime.getRuntime().availableProcessors();
    
        /**
         * For serialization compatibility.
         */
        private static final ObjectStreamField[] serialPersistentFields = {
                new ObjectStreamField("segments", Segment[].class),
                new ObjectStreamField("segmentMask", Integer.TYPE),
                new ObjectStreamField("segmentShift", Integer.TYPE)
        };
    
        /* ---------------- Nodes -------------- */
    
        /**
         * Node是最核心的内部类,它包装了key-value键值对,所有插入ConcurrentHashMap的数据都包装在这里面。
         * 它与HashMap中的定义很相似,但是但是有一些差别,它对value和next属性设置了volatile同步锁,
         * 它不允许调用setValue方法直接改变Node的value域,它增加了find方法辅助map.get()方法。
         */
        static class Node<K, V> implements Map.Entry<K, V> {
            final int hash;
            final K key;
            //val和next都会在扩容时发生变化,所以加上volatile来保持可见性和禁止重排序
            volatile V val;
            volatile Node<K, V> next;
    
            Node(int hash, K key, V val, Node<K, V> next) {
                this.hash = hash;
                this.key = key;
                this.val = val;
                this.next = next;
            }
    
            public final K getKey() {
                return key;
            }
    
            public final V getValue() {
                return val;
            }
    
            /**
             * HashMap中Node类的hashCode()方法中的代码为:Objects.hashCode(key) ^ Objects.hashCode(value)
             * 而Objects.hashCode(key)最终也是调用了 key.hashCode(),但是效果一样
             */
            public final int hashCode() {
                return key.hashCode() ^ val.hashCode();
            }
    
            public final String toString() {
                return key + "=" + val;
            }
    
            //不允许直接改变value的值
            public final V setValue(V value) {
                throw new UnsupportedOperationException();
            }
    
            /**
             * HashMap使用if (o == this),且嵌套if;ConcurrentHashMap使用&&
             */
            public final boolean equals(Object o) {
                Object k, v, u;
                Map.Entry<?, ?> e;
                return ((o instanceof Map.Entry) &&
                        (k = (e = (Map.Entry<?, ?>) o).getKey()) != null &&
                        (v = e.getValue()) != null &&
                        (k == key || k.equals(key)) &&
                        (v == (u = val) || v.equals(u)));
            }
    
            /**
             * 增加find方法辅助get方法 ,HashMap中的Node类中没有此方法
             */
            Node<K, V> find(int h, Object k) {
                Node<K, V> e = this;
                if (k != null) {
                    do {
                        K ek;
                        if (e.hash == h &&
                                ((ek = e.key) == k || (ek != null && k.equals(ek))))
                            return e;
                    } while ((e = e.next) != null);
                }
                return null;
            }
        }
    
        /* ---------------- Static utilities -------------- */
    
        /**
         * 对hashCode进行再散列,算法为(h ^ (h >>> 16)) & HASH_BITS
         */
        static final int spread(int h) {
            return (h ^ (h >>> 16)) & HASH_BITS;
        }
    
        /**
         * 返回大于等于count的最小的2的幂次方
         */
        private static final int tableSizeFor(int c) {
            int n = c - 1;
            n |= n >>> 1;
            n |= n >>> 2;
            n |= n >>> 4;
            n |= n >>> 8;
            n |= n >>> 16;
            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
        }
    
        /**
         * Returns x's Class if it is of the form "class C implements
         * Comparable<C>", else null.
         */
        static Class<?> comparableClassFor(Object x) {
            if (x instanceof Comparable) {
                Class<?> c;
                Type[] ts, as;
                Type t;
                ParameterizedType p;
                if ((c = x.getClass()) == String.class) // bypass checks
                    return c;
                if ((ts = c.getGenericInterfaces()) != null) {
                    for (int i = 0; i < ts.length; ++i) {
                        if (((t = ts[i]) instanceof ParameterizedType) &&
                                ((p = (ParameterizedType) t).getRawType() ==
                                        Comparable.class) &&
                                (as = p.getActualTypeArguments()) != null &&
                                as.length == 1 && as[0] == c) // type arg is c
                            return c;
                    }
                }
            }
            return null;
        }
    
        /**
         * Returns k.compareTo(x) if x matches kc (k's screened comparable
         * class), else 0.
         */
        @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable
        static int compareComparables(Class<?> kc, Object k, Object x) {
            return (x == null || x.getClass() != kc ? 0 :
                    ((Comparable) k).compareTo(x));
        }
    
        /* ---------------- Table element access -------------- */
    
        /*
         * Volatile access methods are used for table elements as well as
         * elements of in-progress next table while resizing.  All uses of
         * the tab arguments must be null checked by callers.  All callers
         * also paranoically precheck that tab's length is not zero (or an
         * equivalent check), thus ensuring that any index argument taking
         * the form of a hash value anded with (length - 1) is a valid
         * index.  Note that, to be correct wrt arbitrary concurrency
         * errors by users, these checks must operate on local variables,
         * which accounts for some odd-looking inline assignments below.
         * Note that calls to setTabAt always occur within locked regions,
         * and so in principle require only release ordering, not
         * full volatile semantics, but are currently coded as volatile
         * writes to be conservative.
         */
    
        /**
         * 获得在i位置上的Node节点
         */
        @SuppressWarnings("unchecked")
        static final <K, V> Node<K, V> tabAt(Node<K, V>[] tab, int i) {
            return (Node<K, V>) U.getObjectVolatile(tab, ((long) i << ASHIFT) + ABASE);
        }
    
        /**
         * 利用CAS算法设置i位置上的Node节点(将c和table[i]比较,相同则插入v)。
         */
        static final <K, V> boolean casTabAt(Node<K, V>[] tab, int i,
                                             Node<K, V> c, Node<K, V> v) {
            return U.compareAndSwapObject(tab, ((long) i << ASHIFT) + ABASE, c, v);
        }
    
        /**
         * 利用volatile方法设置第i个节点的值,这个操作一定是成功的。
         */
        static final <K, V> void setTabAt(Node<K, V>[] tab, int i, Node<K, V> v) {
            U.putObjectVolatile(tab, ((long) i << ASHIFT) + ABASE, v);
        }
    
        /* ---------------- Fields -------------- */
    
        /**
         * 存放node的数组,大小是2的幂次方
         */
        transient volatile Node<K, V>[] table;
    
        /**
         * 扩容时用于存放数据的变量,扩容完成后会置为null。
         */
        private transient volatile Node<K, V>[] nextTable;
    
        /**
         * 记录容器的容量大小,通过CAS更新
         */
        private transient volatile long baseCount;
    
        /**
         * 负数代表正在进行初始化或扩容操作 ,其中-1代表正在初始化 ,-N 表示有N-1个线程正在进行扩容操作
         * 正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小,类似于扩容阈值。
         * 它的值始终是当前ConcurrentHashMap容量的0.75倍,这与loadfactor是对应的。实际容量>=sizeCtl,则扩容。
         */
        private transient volatile int sizeCtl;//控制标识符
    
        /**
         * The next table index (plus one) to split while resizing.
         */
        private transient volatile int transferIndex;
    
        /**
         * 自旋锁 (锁定通过 CAS) 在调整大小和/或创建 CounterCells 时使用。
         * 在CounterCell类更新value中会使用,功能类似显示锁和内置锁,性能更好
         */
        private transient volatile int cellsBusy;
    
        /**
         * counter cell表,长度总为2的幂次
         */
        private transient volatile CounterCell[] counterCells;
    
        // views
        private transient KeySetView<K, V> keySet;
        private transient ValuesView<K, V> values;
        private transient EntrySetView<K, V> entrySet;
    
    
        /* ---------------- Public operations -------------- */
    
        /**
         * 默认的构造函数
         */
        public ConcurrentHashMap() {
        }
    
        /**
         * 指定容量的构造函数
         *
         * @param initialCapacity 初始化容量
         * @throws IllegalArgumentException if the initial capacity of
         *                                  elements is negative
         */
        public ConcurrentHashMap(int initialCapacity) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException();
            int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                    MAXIMUM_CAPACITY :
                    tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
            this.sizeCtl = cap;//初始化sizeCtl
        }
    
        /**
         * 创建与给定map具有相同映射的新map
         *
         * @param m the map
         */
        public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
            this.sizeCtl = DEFAULT_CAPACITY;
            putAll(m);
        }
    
        /**
         * Creates a new, empty map with an initial table size based on
         * the given number of elements ({@code initialCapacity}) and
         * initial table density ({@code loadFactor}).
         *
         * @param initialCapacity 初始容量
         * @param loadFactor      负载因子,当容量达到initialCapacity*loadFactor时,执行扩容
         * @throws IllegalArgumentException if the initial capacity of
         *                                  elements is negative or the load factor is nonpositive
         * @since 1.6
         */
        public ConcurrentHashMap(int initialCapacity, float loadFactor) {
            this(initialCapacity, loadFactor, 1);
        }
    
        /**
         * Creates a new, empty map with an initial table size based on
         * the given number of elements ({@code initialCapacity}), table
         * density ({@code loadFactor}), and number of concurrently
         * updating threads ({@code concurrencyLevel}).
         *
         * @param initialCapacity  初始容量
         * @param loadFactor       负载因子,当容量达到initialCapacity*loadFactor时,执行扩容
         * @param concurrencyLevel 预估的并发更新线程数
         * @throws IllegalArgumentException if the initial capacity is
         *                                  negative or the load factor or concurrencyLevel are
         *                                  nonpositive
         */
        public ConcurrentHashMap(int initialCapacity,
                                 float loadFactor, int concurrencyLevel) {
            if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
                throw new IllegalArgumentException();
            if (initialCapacity < concurrencyLevel)   // Use at least as many bins
                initialCapacity = concurrencyLevel;   // as estimated threads
            long size = (long) (1.0 + (long) initialCapacity / loadFactor);
            int cap = (size >= (long) MAXIMUM_CAPACITY) ?
                    MAXIMUM_CAPACITY : tableSizeFor((int) size);
            this.sizeCtl = cap;
        }
    
        // Original (since JDK1.2) Map methods
    
        /**
         * {@inheritDoc}
         */
        public int size() {
            long n = sumCount();
            return ((n < 0L) ? 0 :
                    (n > (long) Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                            (int) n);
        }
    
        /**
         * {@inheritDoc}
         */
        public boolean isEmpty() {
            return sumCount() <= 0L; // ignore transient negative values
        }
    
        /**
         * 根据key在Map中找出其对应的value,如果不存在key,则返回null,
         * 其中key不允许为null,否则抛异常
         * 对于节点可能在链表或树上的情况,需要分别去查找
         *
         * @throws NullPointerException if the specified key is null
         */
        public V get(Object key) {
            Node<K, V>[] tab;
            Node<K, V> e, p;
            int n, eh;
            K ek;
            int h = spread(key.hashCode());//两次hash计算出hash值
            //根据hash值确定节点位置
            if ((tab = table) != null && (n = tab.length) > 0 &&
                    (e = tabAt(tab, (n - 1) & h)) != null) {
                // 搜索到的节点key与传入的key相同且不为null,直接返回这个节点
                if ((eh = e.hash) == h) {
                    if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                        return e.val;
                } else if (eh < 0)//如果eh<0 说明这个节点在树上 直接寻找
                    return (p = e.find(h, key)) != null ? p.val : null;
                //否则遍历链表 找到对应的值并返回
                while ((e = e.next) != null) {
                    if (e.hash == h &&
                            ((ek = e.key) == key || (ek != null && key.equals(ek))))
                        return e.val;
                }
            }
            return null;
        }
    
        /**
         * 检查table中是否含有key
         *
         * @param key possible key
         * @return {@code true} if and only if the specified object
         * is a key in this table, as determined by the
         * {@code equals} method; {@code false} otherwise
         * @throws NullPointerException if the specified key is null
         */
        public boolean containsKey(Object key) {
            //直接调用get(int key)方法即可,如果有返回值,则说明是包含key的
            return get(key) != null;
        }
    
        /**
         * 检查在所有映射(k,v)中只要出现一次及以上的v==value,返回true
         * 这个方法可能需要完全遍历Map,因此比containsKey要慢的多
         *
         * @param value value whose presence in this map is to be tested
         * @return {@code true} if this map maps one or more keys to the
         * specified value
         * @throws NullPointerException if the specified value is null
         */
        public boolean containsValue(Object value) {
            if (value == null)
                throw new NullPointerException();
            Node<K, V>[] t;
            if ((t = table) != null) {
                Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                for (Node<K, V> p; (p = it.advance()) != null; ) {
                    V v;
                    if ((v = p.val) == value || (v != null && value.equals(v)))
                        return true;
                }
            }
            return false;
        }
    
        /**
         * 直接调用putVal(key, value, false)方法
         *
         * @param key   key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with {@code key}, or
         * {@code null} if there was no mapping for {@code key}
         * @throws NullPointerException if the specified key or value is null
         */
        public V put(K key, V value) {
            return putVal(key, value, false);
        }
    
        /**
         * putVal方法可以分为以下几步:
         * 1、检查key/value是否为空,如果为空,则抛异常,否则进行2
         * 2、进入for死循环,进行3
         * 3、检查table是否初始化了,如果没有,则调用initTable()进行初始化然后进行 2,否则进行4
         * 4、根据key的hash值计算出其应该在table中储存的位置i,取出table[i]的节点用f表示。
         * 根据f的不同有如下三种情况:
         * 1)如果table[i]==null(即该位置的节点为空,没有发生碰撞),则利用CAS操作直接存储在该位置,如果CAS操作成功则退出死循环。
         * 2)如果table[i]!=null(即该位置已经有其它节点,发生碰撞),碰撞处理也有两种情况
         * 2.1)检查table[i]的节点的hash是否等于MOVED,如果等于,则检测到正在扩容,则帮助其扩容
         * 2.2)说明table[i]的节点的hash值不等于MOVED,如果table[i]为链表节点,则将此节点插入链表中即可
         * 如果table[i]为树节点,则将此节点插入树中即可。插入成功后,进行 5
         * 5、如果table[i]的节点是链表节点,则检查table的第i个位置的链表是否需要转化为数,如果需要则调用treeifyBin函数进行转化
         */
        final V putVal(K key, V value, boolean onlyIfAbsent) {
            if (key == null || value == null) throw new NullPointerException();// key和value不允许null
            int hash = spread(key.hashCode());//两次hash,减少hash冲突,可以均匀分布
            int binCount = 0;//i处结点标志,0: 未加入新结点, 2: TreeBin或链表结点数, 其它:链表结点数。主要用于每次加入结点后查看是否要由链表转为红黑树
            for (Node<K, V>[] tab = table; ; ) {//CAS经典写法,不成功无限重试
                Node<K, V> f;
                int n, i, fh;
                //检查是否初始化了,如果没有,则初始化
                if (tab == null || (n = tab.length) == 0)
                    tab = initTable();
                /**
                 * i=(n-1)&hash 等价于i=hash%n(前提是n为2的幂次方).即取出table中位置的节点用f表示。 有如下两种情况:
                 * 1、如果table[i]==null(即该位置的节点为空,没有发生碰撞),则利用CAS操作直接存储在该位置, 如果CAS操作成功则退出死循环。
                 * 2、如果table[i]!=null(即该位置已经有其它节点,发生碰撞)
                 */
                else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                    if (casTabAt(tab, i, null,
                            new Node<K, V>(hash, key, value, null)))
                        break;                   // no lock when adding to empty bin
                } else if ((fh = f.hash) == MOVED)//检查table[i]的节点的hash是否等于MOVED,如果等于,则检测到正在扩容,则帮助其扩容
                    tab = helpTransfer(tab, f);
                else {//table[i]的节点的hash值不等于MOVED。
                    V oldVal = null;
                    // 针对首个节点进行加锁操作,而不是segment,进一步减少线程冲突
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {
                                binCount = 1;
                                for (Node<K, V> e = f; ; ++binCount) {
                                    K ek;
                                    // 如果在链表中找到值为key的节点e,直接设置e.val = value即可
                                    if (e.hash == hash &&
                                            ((ek = e.key) == key ||
                                                    (ek != null && key.equals(ek)))) {
                                        oldVal = e.val;
                                        if (!onlyIfAbsent)
                                            e.val = value;
                                        break;
                                    }
                                    // 如果没有找到值为key的节点,直接新建Node并加入链表即可
                                    Node<K, V> pred = e;
                                    if ((e = e.next) == null) {//插入到链表末尾并跳出循环
                                        pred.next = new Node<K, V>(hash, key,
                                                value, null);
                                        break;
                                    }
                                }
                            } else if (f instanceof TreeBin) {// 如果首节点为TreeBin类型,说明为红黑树结构,执行putTreeVal操作
                                Node<K, V> p;
                                binCount = 2;
                                if ((p = ((TreeBin<K, V>) f).putTreeVal(hash, key,
                                        value)) != null) {
                                    oldVal = p.val;
                                    if (!onlyIfAbsent)
                                        p.val = value;
                                }
                            }
                        }
                    }
                    if (binCount != 0) {
                        // 如果节点数>=8,那么转换链表结构为红黑树结构
                        if (binCount >= TREEIFY_THRESHOLD)
                            treeifyBin(tab, i);//若length<64,直接tryPresize,两倍table.length;不转红黑树
                        if (oldVal != null)
                            return oldVal;
                        break;
                    }
                }
            }
            // 计数增加1,有可能触发transfer操作(扩容)
            addCount(1L, binCount);
            return null;
        }
    
        /**
         * Copies all of the mappings from the specified map to this one.
         * These mappings replace any mappings that this map had for any of the
         * keys currently in the specified map.
         *
         * @param m mappings to be stored in this map
         */
        public void putAll(Map<? extends K, ? extends V> m) {
            tryPresize(m.size());
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
                putVal(e.getKey(), e.getValue(), false);
        }
    
        /**
         * Removes the key (and its corresponding value) from this map.
         * This method does nothing if the key is not in the map.
         *
         * @param key the key that needs to be removed
         * @return the previous value associated with {@code key}, or
         * {@code null} if there was no mapping for {@code key}
         * @throws NullPointerException if the specified key is null
         */
        public V remove(Object key) {
            return replaceNode(key, null, null);
        }
    
        /**
         * Implementation for the four public remove/replace methods:
         * Replaces node value with v, conditional upon match of cv if
         * non-null.  If resulting value is null, delete.
         */
        final V replaceNode(Object key, V value, Object cv) {
            int hash = spread(key.hashCode());
            for (Node<K, V>[] tab = table; ; ) {
                Node<K, V> f;
                int n, i, fh;
                if (tab == null || (n = tab.length) == 0 ||
                        (f = tabAt(tab, i = (n - 1) & hash)) == null)
                    break;
                else if ((fh = f.hash) == MOVED)
                    tab = helpTransfer(tab, f);
                else {
                    V oldVal = null;
                    boolean validated = false;
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {
                                validated = true;
                                for (Node<K, V> e = f, pred = null; ; ) {
                                    K ek;
                                    if (e.hash == hash &&
                                            ((ek = e.key) == key ||
                                                    (ek != null && key.equals(ek)))) {
                                        V ev = e.val;
                                        if (cv == null || cv == ev ||
                                                (ev != null && cv.equals(ev))) {
                                            oldVal = ev;
                                            if (value != null)
                                                e.val = value;
                                            else if (pred != null)
                                                pred.next = e.next;
                                            else
                                                setTabAt(tab, i, e.next);
                                        }
                                        break;
                                    }
                                    pred = e;
                                    if ((e = e.next) == null)
                                        break;
                                }
                            } else if (f instanceof TreeBin) {
                                validated = true;
                                TreeBin<K, V> t = (TreeBin<K, V>) f;
                                TreeNode<K, V> r, p;
                                if ((r = t.root) != null &&
                                        (p = r.findTreeNode(hash, key, null)) != null) {
                                    V pv = p.val;
                                    if (cv == null || cv == pv ||
                                            (pv != null && cv.equals(pv))) {
                                        oldVal = pv;
                                        if (value != null)
                                            p.val = value;
                                        else if (t.removeTreeNode(p))
                                            setTabAt(tab, i, untreeify(t.first));
                                    }
                                }
                            }
                        }
                    }
                    if (validated) {
                        if (oldVal != null) {
                            if (value == null)
                                addCount(-1L, -1);
                            return oldVal;
                        }
                        break;
                    }
                }
            }
            return null;
        }
    
        /**
         * Removes all of the mappings from this map.
         */
        public void clear() {
            long delta = 0L; // negative number of deletions
            int i = 0;
            Node<K, V>[] tab = table;
            while (tab != null && i < tab.length) {
                int fh;
                Node<K, V> f = tabAt(tab, i);
                if (f == null)
                    ++i;
                else if ((fh = f.hash) == MOVED) {
                    tab = helpTransfer(tab, f);
                    i = 0; // restart
                } else {
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            Node<K, V> p = (fh >= 0 ? f :
                                    (f instanceof TreeBin) ?
                                            ((TreeBin<K, V>) f).first : null);
                            while (p != null) {
                                --delta;
                                p = p.next;
                            }
                            setTabAt(tab, i++, null);
                        }
                    }
                }
            }
            if (delta != 0L)
                addCount(delta, -1);
        }
    
        /**
         * Returns a {@link Set} view of the keys contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa. The set supports element
         * removal, which removes the corresponding mapping from this map,
         * via the {@code Iterator.remove}, {@code Set.remove},
         * {@code removeAll}, {@code retainAll}, and {@code clear}
         * operations.  It does not support the {@code add} or
         * {@code addAll} operations.
         * <p>
         * <p>The view's iterators and spliterators are
         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
         * <p>
         * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
         * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
         *
         * @return the set view
         */
        public KeySetView<K, V> keySet() {
            KeySetView<K, V> ks;
            return (ks = keySet) != null ? ks : (keySet = new KeySetView<K, V>(this, null));
        }
    
        /**
         * Returns a {@link Collection} view of the values contained in this map.
         * The collection is backed by the map, so changes to the map are
         * reflected in the collection, and vice-versa.  The collection
         * supports element removal, which removes the corresponding
         * mapping from this map, via the {@code Iterator.remove},
         * {@code Collection.remove}, {@code removeAll},
         * {@code retainAll}, and {@code clear} operations.  It does not
         * support the {@code add} or {@code addAll} operations.
         * <p>
         * <p>The view's iterators and spliterators are
         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
         * <p>
         * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
         * and {@link Spliterator#NONNULL}.
         *
         * @return the collection view
         */
        public Collection<V> values() {
            ValuesView<K, V> vs;
            return (vs = values) != null ? vs : (values = new ValuesView<K, V>(this));
        }
    
        /**
         * Returns a {@link Set} view of the mappings contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  The set supports element
         * removal, which removes the corresponding mapping from the map,
         * via the {@code Iterator.remove}, {@code Set.remove},
         * {@code removeAll}, {@code retainAll}, and {@code clear}
         * operations.
         * <p>
         * <p>The view's iterators and spliterators are
         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
         * <p>
         * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
         * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
         *
         * @return the set view
         */
        public Set<Map.Entry<K, V>> entrySet() {
            EntrySetView<K, V> es;
            return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K, V>(this));
        }
    
        /**
         * Returns the hash code value for this {@link Map}, i.e.,
         * the sum of, for each key-value pair in the map,
         * {@code key.hashCode() ^ value.hashCode()}.
         *
         * @return the hash code value for this map
         */
        public int hashCode() {
            int h = 0;
            Node<K, V>[] t;
            if ((t = table) != null) {
                Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                for (Node<K, V> p; (p = it.advance()) != null; )
                    h += p.key.hashCode() ^ p.val.hashCode();
            }
            return h;
        }
    
        /**
         * Returns a string representation of this map.  The string
         * representation consists of a list of key-value mappings (in no
         * particular order) enclosed in braces ("{@code {}}").  Adjacent
         * mappings are separated by the characters {@code ", "} (comma
         * and space).  Each key-value mapping is rendered as the key
         * followed by an equals sign ("{@code =}") followed by the
         * associated value.
         *
         * @return a string representation of this map
         */
        public String toString() {
            Node<K, V>[] t;
            int f = (t = table) == null ? 0 : t.length;
            Traverser<K, V> it = new Traverser<K, V>(t, f, 0, f);
            StringBuilder sb = new StringBuilder();
            sb.append('{');
            Node<K, V> p;
            if ((p = it.advance()) != null) {
                for (; ; ) {
                    K k = p.key;
                    V v = p.val;
                    sb.append(k == this ? "(this Map)" : k);
                    sb.append('=');
                    sb.append(v == this ? "(this Map)" : v);
                    if ((p = it.advance()) == null)
                        break;
                    sb.append(',').append(' ');
                }
            }
            return sb.append('}').toString();
        }
    
        /**
         * Compares the specified object with this map for equality.
         * Returns {@code true} if the given object is a map with the same
         * mappings as this map.  This operation may return misleading
         * results if either map is concurrently modified during execution
         * of this method.
         *
         * @param o object to be compared for equality with this map
         * @return {@code true} if the specified object is equal to this map
         */
        public boolean equals(Object o) {
            if (o != this) {
                if (!(o instanceof Map))
                    return false;
                Map<?, ?> m = (Map<?, ?>) o;
                Node<K, V>[] t;
                int f = (t = table) == null ? 0 : t.length;
                Traverser<K, V> it = new Traverser<K, V>(t, f, 0, f);
                for (Node<K, V> p; (p = it.advance()) != null; ) {
                    V val = p.val;
                    Object v = m.get(p.key);
                    if (v == null || (v != val && !v.equals(val)))
                        return false;
                }
                for (Map.Entry<?, ?> e : m.entrySet()) {
                    Object mk, mv, v;
                    if ((mk = e.getKey()) == null ||
                            (mv = e.getValue()) == null ||
                            (v = get(mk)) == null ||
                            (mv != v && !mv.equals(v)))
                        return false;
                }
            }
            return true;
        }
    
        /**
         * Stripped-down version of helper class used in previous version,
         * declared for the sake of serialization compatibility
         */
        static class Segment<K, V> extends ReentrantLock implements Serializable {
            private static final long serialVersionUID = 2249069246763182397L;
            final float loadFactor;
    
            Segment(float lf) {
                this.loadFactor = lf;
            }
        }
    
        /**
         * Saves the state of the {@code ConcurrentHashMap} instance to a
         * stream (i.e., serializes it).
         *
         * @param s the stream
         * @throws java.io.IOException if an I/O error occurs
         * @serialData the key (Object) and value (Object)
         * for each key-value mapping, followed by a null pair.
         * The key-value mappings are emitted in no particular order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
                throws java.io.IOException {
            // For serialization compatibility
            // Emulate segment calculation from previous version of this class
            int sshift = 0;
            int ssize = 1;
            while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
                ++sshift;
                ssize <<= 1;
            }
            int segmentShift = 32 - sshift;
            int segmentMask = ssize - 1;
            @SuppressWarnings("unchecked")
            Segment<K, V>[] segments = (Segment<K, V>[])
                    new Segment<?, ?>[DEFAULT_CONCURRENCY_LEVEL];
            for (int i = 0; i < segments.length; ++i)
                segments[i] = new Segment<K, V>(LOAD_FACTOR);
            s.putFields().put("segments", segments);
            s.putFields().put("segmentShift", segmentShift);
            s.putFields().put("segmentMask", segmentMask);
            s.writeFields();
    
            Node<K, V>[] t;
            if ((t = table) != null) {
                Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                for (Node<K, V> p; (p = it.advance()) != null; ) {
                    s.writeObject(p.key);
                    s.writeObject(p.val);
                }
            }
            s.writeObject(null);
            s.writeObject(null);
            segments = null; // throw away
        }
    
        /**
         * Reconstitutes the instance from a stream (that is, deserializes it).
         *
         * @param s the stream
         * @throws ClassNotFoundException if the class of a serialized object
         *                                could not be found
         * @throws java.io.IOException    if an I/O error occurs
         */
        private void readObject(java.io.ObjectInputStream s)
                throws java.io.IOException, ClassNotFoundException {
            /*
             * To improve performance in typical cases, we create nodes
             * while reading, then place in table once size is known.
             * However, we must also validate uniqueness and deal with
             * overpopulated bins while doing so, which requires
             * specialized versions of putVal mechanics.
             */
            sizeCtl = -1; // force exclusion for table construction
            s.defaultReadObject();
            long size = 0L;
            Node<K, V> p = null;
            for (; ; ) {
                @SuppressWarnings("unchecked")
                K k = (K) s.readObject();
                @SuppressWarnings("unchecked")
                V v = (V) s.readObject();
                if (k != null && v != null) {
                    p = new Node<K, V>(spread(k.hashCode()), k, v, p);
                    ++size;
                } else
                    break;
            }
            if (size == 0L)
                sizeCtl = 0;
            else {
                int n;
                if (size >= (long) (MAXIMUM_CAPACITY >>> 1))
                    n = MAXIMUM_CAPACITY;
                else {
                    int sz = (int) size;
                    n = tableSizeFor(sz + (sz >>> 1) + 1);
                }
                @SuppressWarnings("unchecked")
                Node<K, V>[] tab = (Node<K, V>[]) new Node<?, ?>[n];
                int mask = n - 1;
                long added = 0L;
                while (p != null) {
                    boolean insertAtFront;
                    Node<K, V> next = p.next, first;
                    int h = p.hash, j = h & mask;
                    if ((first = tabAt(tab, j)) == null)
                        insertAtFront = true;
                    else {
                        K k = p.key;
                        if (first.hash < 0) {
                            TreeBin<K, V> t = (TreeBin<K, V>) first;
                            if (t.putTreeVal(h, k, p.val) == null)
                                ++added;
                            insertAtFront = false;
                        } else {
                            int binCount = 0;
                            insertAtFront = true;
                            Node<K, V> q;
                            K qk;
                            for (q = first; q != null; q = q.next) {
                                if (q.hash == h &&
                                        ((qk = q.key) == k ||
                                                (qk != null && k.equals(qk)))) {
                                    insertAtFront = false;
                                    break;
                                }
                                ++binCount;
                            }
                            if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
                                insertAtFront = false;
                                ++added;
                                p.next = first;
                                TreeNode<K, V> hd = null, tl = null;
                                for (q = p; q != null; q = q.next) {
                                    TreeNode<K, V> t = new TreeNode<K, V>
                                            (q.hash, q.key, q.val, null, null);
                                    if ((t.prev = tl) == null)
                                        hd = t;
                                    else
                                        tl.next = t;
                                    tl = t;
                                }
                                setTabAt(tab, j, new TreeBin<K, V>(hd));
                            }
                        }
                    }
                    if (insertAtFront) {
                        ++added;
                        p.next = first;
                        setTabAt(tab, j, p);
                    }
                    p = next;
                }
                table = tab;
                sizeCtl = n - (n >>> 2);
                baseCount = added;
            }
        }
    
        // ConcurrentMap methods
    
        /**
         * {@inheritDoc}
         *
         * @return the previous value associated with the specified key,
         * or {@code null} if there was no mapping for the key
         * @throws NullPointerException if the specified key or value is null
         */
        public V putIfAbsent(K key, V value) {
            return putVal(key, value, true);
        }
    
        /**
         * {@inheritDoc}
         *
         * @throws NullPointerException if the specified key is null
         */
        public boolean remove(Object key, Object value) {
            if (key == null)
                throw new NullPointerException();
            return value != null && replaceNode(key, null, value) != null;
        }
    
        /**
         * {@inheritDoc}
         *
         * @throws NullPointerException if any of the arguments are null
         */
        public boolean replace(K key, V oldValue, V newValue) {
            if (key == null || oldValue == null || newValue == null)
                throw new NullPointerException();
            return replaceNode(key, newValue, oldValue) != null;
        }
    
        /**
         * {@inheritDoc}
         *
         * @return the previous value associated with the specified key,
         * or {@code null} if there was no mapping for the key
         * @throws NullPointerException if the specified key or value is null
         */
        public V replace(K key, V value) {
            if (key == null || value == null)
                throw new NullPointerException();
            return replaceNode(key, value, null);
        }
    
        // Overrides of JDK8+ Map extension method defaults
    
        /**
         * Returns the value to which the specified key is mapped, or the
         * given default value if this map contains no mapping for the
         * key.
         *
         * @param key          the key whose associated value is to be returned
         * @param defaultValue the value to return if this map contains
         *                     no mapping for the given key
         * @return the mapping for the key, if present; else the default value
         * @throws NullPointerException if the specified key is null
         */
        public V getOrDefault(Object key, V defaultValue) {
            V v;
            return (v = get(key)) == null ? defaultValue : v;
        }
    
        public void forEach(BiConsumer<? super K, ? super V> action) {
            if (action == null) throw new NullPointerException();
            Node<K, V>[] t;
            if ((t = table) != null) {
                Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                for (Node<K, V> p; (p = it.advance()) != null; ) {
                    action.accept(p.key, p.val);
                }
            }
        }
    
        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
            if (function == null) throw new NullPointerException();
            Node<K, V>[] t;
            if ((t = table) != null) {
                Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                for (Node<K, V> p; (p = it.advance()) != null; ) {
                    V oldValue = p.val;
                    for (K key = p.key; ; ) {
                        V newValue = function.apply(key, oldValue);
                        if (newValue == null)
                            throw new NullPointerException();
                        if (replaceNode(key, newValue, oldValue) != null ||
                                (oldValue = get(key)) == null)
                            break;
                    }
                }
            }
        }
    
        /**
         * If the specified key is not already associated with a value,
         * attempts to compute its value using the given mapping function
         * and enters it into this map unless {@code null}.  The entire
         * method invocation is performed atomically, so the function is
         * applied at most once per key.  Some attempted update operations
         * on this map by other threads may be blocked while computation
         * is in progress, so the computation should be short and simple,
         * and must not attempt to update any other mappings of this map.
         *
         * @param key             key with which the specified value is to be associated
         * @param mappingFunction the function to compute a value
         * @return the current (existing or computed) value associated with
         * the specified key, or null if the computed value is null
         * @throws NullPointerException  if the specified key or mappingFunction
         *                               is null
         * @throws IllegalStateException if the computation detectably
         *                               attempts a recursive update to this map that would
         *                               otherwise never complete
         * @throws RuntimeException      or Error if the mappingFunction does so,
         *                               in which case the mapping is left unestablished
         */
        public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
            if (key == null || mappingFunction == null)
                throw new NullPointerException();
            int h = spread(key.hashCode());
            V val = null;
            int binCount = 0;
            for (Node<K, V>[] tab = table; ; ) {
                Node<K, V> f;
                int n, i, fh;
                if (tab == null || (n = tab.length) == 0)
                    tab = initTable();
                else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
                    Node<K, V> r = new ReservationNode<K, V>();
                    synchronized (r) {
                        if (casTabAt(tab, i, null, r)) {
                            binCount = 1;
                            Node<K, V> node = null;
                            try {
                                if ((val = mappingFunction.apply(key)) != null)
                                    node = new Node<K, V>(h, key, val, null);
                            } finally {
                                setTabAt(tab, i, node);
                            }
                        }
                    }
                    if (binCount != 0)
                        break;
                } else if ((fh = f.hash) == MOVED)
                    tab = helpTransfer(tab, f);
                else {
                    boolean added = false;
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {
                                binCount = 1;
                                for (Node<K, V> e = f; ; ++binCount) {
                                    K ek;
                                    V ev;
                                    if (e.hash == h &&
                                            ((ek = e.key) == key ||
                                                    (ek != null && key.equals(ek)))) {
                                        val = e.val;
                                        break;
                                    }
                                    Node<K, V> pred = e;
                                    if ((e = e.next) == null) {
                                        if ((val = mappingFunction.apply(key)) != null) {
                                            added = true;
                                            pred.next = new Node<K, V>(h, key, val, null);
                                        }
                                        break;
                                    }
                                }
                            } else if (f instanceof TreeBin) {
                                binCount = 2;
                                TreeBin<K, V> t = (TreeBin<K, V>) f;
                                TreeNode<K, V> r, p;
                                if ((r = t.root) != null &&
                                        (p = r.findTreeNode(h, key, null)) != null)
                                    val = p.val;
                                else if ((val = mappingFunction.apply(key)) != null) {
                                    added = true;
                                    t.putTreeVal(h, key, val);
                                }
                            }
                        }
                    }
                    if (binCount != 0) {
                        if (binCount >= TREEIFY_THRESHOLD)
                            treeifyBin(tab, i);
                        if (!added)
                            return val;
                        break;
                    }
                }
            }
            if (val != null)
                addCount(1L, binCount);
            return val;
        }
    
        /**
         * If the value for the specified key is present, attempts to
         * compute a new mapping given the key and its current mapped
         * value.  The entire method invocation is performed atomically.
         * Some attempted update operations on this map by other threads
         * may be blocked while computation is in progress, so the
         * computation should be short and simple, and must not attempt to
         * update any other mappings of this map.
         *
         * @param key               key with which a value may be associated
         * @param remappingFunction the function to compute a value
         * @return the new value associated with the specified key, or null if none
         * @throws NullPointerException  if the specified key or remappingFunction
         *                               is null
         * @throws IllegalStateException if the computation detectably
         *                               attempts a recursive update to this map that would
         *                               otherwise never complete
         * @throws RuntimeException      or Error if the remappingFunction does so,
         *                               in which case the mapping is unchanged
         */
        public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            if (key == null || remappingFunction == null)
                throw new NullPointerException();
            int h = spread(key.hashCode());
            V val = null;
            int delta = 0;
            int binCount = 0;
            for (Node<K, V>[] tab = table; ; ) {
                Node<K, V> f;
                int n, i, fh;
                if (tab == null || (n = tab.length) == 0)
                    tab = initTable();
                else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
                    break;
                else if ((fh = f.hash) == MOVED)
                    tab = helpTransfer(tab, f);
                else {
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {
                                binCount = 1;
                                for (Node<K, V> e = f, pred = null; ; ++binCount) {
                                    K ek;
                                    if (e.hash == h &&
                                            ((ek = e.key) == key ||
                                                    (ek != null && key.equals(ek)))) {
                                        val = remappingFunction.apply(key, e.val);
                                        if (val != null)
                                            e.val = val;
                                        else {
                                            delta = -1;
                                            Node<K, V> en = e.next;
                                            if (pred != null)
                                                pred.next = en;
                                            else
                                                setTabAt(tab, i, en);
                                        }
                                        break;
                                    }
                                    pred = e;
                                    if ((e = e.next) == null)
                                        break;
                                }
                            } else if (f instanceof TreeBin) {
                                binCount = 2;
                                TreeBin<K, V> t = (TreeBin<K, V>) f;
                                TreeNode<K, V> r, p;
                                if ((r = t.root) != null &&
                                        (p = r.findTreeNode(h, key, null)) != null) {
                                    val = remappingFunction.apply(key, p.val);
                                    if (val != null)
                                        p.val = val;
                                    else {
                                        delta = -1;
                                        if (t.removeTreeNode(p))
                                            setTabAt(tab, i, untreeify(t.first));
                                    }
                                }
                            }
                        }
                    }
                    if (binCount != 0)
                        break;
                }
            }
            if (delta != 0)
                addCount((long) delta, binCount);
            return val;
        }
    
        /**
         * Attempts to compute a mapping for the specified key and its
         * current mapped value (or {@code null} if there is no current
         * mapping). The entire method invocation is performed atomically.
         * Some attempted update operations on this map by other threads
         * may be blocked while computation is in progress, so the
         * computation should be short and simple, and must not attempt to
         * update any other mappings of this Map.
         *
         * @param key               key with which the specified value is to be associated
         * @param remappingFunction the function to compute a value
         * @return the new value associated with the specified key, or null if none
         * @throws NullPointerException  if the specified key or remappingFunction
         *                               is null
         * @throws IllegalStateException if the computation detectably
         *                               attempts a recursive update to this map that would
         *                               otherwise never complete
         * @throws RuntimeException      or Error if the remappingFunction does so,
         *                               in which case the mapping is unchanged
         */
        public V compute(K key,
                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            if (key == null || remappingFunction == null)
                throw new NullPointerException();
            int h = spread(key.hashCode());
            V val = null;
            int delta = 0;
            int binCount = 0;
            for (Node<K, V>[] tab = table; ; ) {
                Node<K, V> f;
                int n, i, fh;
                if (tab == null || (n = tab.length) == 0)
                    tab = initTable();
                else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
                    Node<K, V> r = new ReservationNode<K, V>();
                    synchronized (r) {
                        if (casTabAt(tab, i, null, r)) {
                            binCount = 1;
                            Node<K, V> node = null;
                            try {
                                if ((val = remappingFunction.apply(key, null)) != null) {
                                    delta = 1;
                                    node = new Node<K, V>(h, key, val, null);
                                }
                            } finally {
                                setTabAt(tab, i, node);
                            }
                        }
                    }
                    if (binCount != 0)
                        break;
                } else if ((fh = f.hash) == MOVED)
                    tab = helpTransfer(tab, f);
                else {
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {
                                binCount = 1;
                                for (Node<K, V> e = f, pred = null; ; ++binCount) {
                                    K ek;
                                    if (e.hash == h &&
                                            ((ek = e.key) == key ||
                                                    (ek != null && key.equals(ek)))) {
                                        val = remappingFunction.apply(key, e.val);
                                        if (val != null)
                                            e.val = val;
                                        else {
                                            delta = -1;
                                            Node<K, V> en = e.next;
                                            if (pred != null)
                                                pred.next = en;
                                            else
                                                setTabAt(tab, i, en);
                                        }
                                        break;
                                    }
                                    pred = e;
                                    if ((e = e.next) == null) {
                                        val = remappingFunction.apply(key, null);
                                        if (val != null) {
                                            delta = 1;
                                            pred.next =
                                                    new Node<K, V>(h, key, val, null);
                                        }
                                        break;
                                    }
                                }
                            } else if (f instanceof TreeBin) {
                                binCount = 1;
                                TreeBin<K, V> t = (TreeBin<K, V>) f;
                                TreeNode<K, V> r, p;
                                if ((r = t.root) != null)
                                    p = r.findTreeNode(h, key, null);
                                else
                                    p = null;
                                V pv = (p == null) ? null : p.val;
                                val = remappingFunction.apply(key, pv);
                                if (val != null) {
                                    if (p != null)
                                        p.val = val;
                                    else {
                                        delta = 1;
                                        t.putTreeVal(h, key, val);
                                    }
                                } else if (p != null) {
                                    delta = -1;
                                    if (t.removeTreeNode(p))
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                    if (binCount != 0) {
                        if (binCount >= TREEIFY_THRESHOLD)
                            treeifyBin(tab, i);
                        break;
                    }
                }
            }
            if (delta != 0)
                addCount((long) delta, binCount);
            return val;
        }
    
        /**
         * If the specified key is not already associated with a
         * (non-null) value, associates it with the given value.
         * Otherwise, replaces the value with the results of the given
         * remapping function, or removes if {@code null}. The entire
         * method invocation is performed atomically.  Some attempted
         * update operations on this map by other threads may be blocked
         * while computation is in progress, so the computation should be
         * short and simple, and must not attempt to update any other
         * mappings of this Map.
         *
         * @param key               key with which the specified value is to be associated
         * @param value             the value to use if absent
         * @param remappingFunction the function to recompute a value if present
         * @return the new value associated with the specified key, or null if none
         * @throws NullPointerException if the specified key or the
         *                              remappingFunction is null
         * @throws RuntimeException     or Error if the remappingFunction does so,
         *                              in which case the mapping is unchanged
         */
        public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
            if (key == null || value == null || remappingFunction == null)
                throw new NullPointerException();
            int h = spread(key.hashCode());
            V val = null;
            int delta = 0;
            int binCount = 0;
            for (Node<K, V>[] tab = table; ; ) {
                Node<K, V> f;
                int n, i, fh;
                if (tab == null || (n = tab.length) == 0)
                    tab = initTable();
                else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
                    if (casTabAt(tab, i, null, new Node<K, V>(h, key, value, null))) {
                        delta = 1;
                        val = value;
                        break;
                    }
                } else if ((fh = f.hash) == MOVED)
                    tab = helpTransfer(tab, f);
                else {
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {
                                binCount = 1;
                                for (Node<K, V> e = f, pred = null; ; ++binCount) {
                                    K ek;
                                    if (e.hash == h &&
                                            ((ek = e.key) == key ||
                                                    (ek != null && key.equals(ek)))) {
                                        val = remappingFunction.apply(e.val, value);
                                        if (val != null)
                                            e.val = val;
                                        else {
                                            delta = -1;
                                            Node<K, V> en = e.next;
                                            if (pred != null)
                                                pred.next = en;
                                            else
                                                setTabAt(tab, i, en);
                                        }
                                        break;
                                    }
                                    pred = e;
                                    if ((e = e.next) == null) {
                                        delta = 1;
                                        val = value;
                                        pred.next =
                                                new Node<K, V>(h, key, val, null);
                                        break;
                                    }
                                }
                            } else if (f instanceof TreeBin) {
                                binCount = 2;
                                TreeBin<K, V> t = (TreeBin<K, V>) f;
                                TreeNode<K, V> r = t.root;
                                TreeNode<K, V> p = (r == null) ? null :
                                        r.findTreeNode(h, key, null);
                                val = (p == null) ? value :
                                        remappingFunction.apply(p.val, value);
                                if (val != null) {
                                    if (p != null)
                                        p.val = val;
                                    else {
                                        delta = 1;
                                        t.putTreeVal(h, key, val);
                                    }
                                } else if (p != null) {
                                    delta = -1;
                                    if (t.removeTreeNode(p))
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                    if (binCount != 0) {
                        if (binCount >= TREEIFY_THRESHOLD)
                            treeifyBin(tab, i);
                        break;
                    }
                }
            }
            if (delta != 0)
                addCount((long) delta, binCount);
            return val;
        }
    
        // Hashtable legacy methods
    
        /**
         * Legacy method testing if some key maps into the specified value
         * in this table.  This method is identical in functionality to
         * {@link #containsValue(Object)}, and exists solely to ensure
         * full compatibility with class {@link java.util.Hashtable},
         * which supported this method prior to introduction of the
         * Java Collections framework.
         *
         * @param value a value to search for
         * @return {@code true} if and only if some key maps to the
         * {@code value} argument in this table as
         * determined by the {@code equals} method;
         * {@code false} otherwise
         * @throws NullPointerException if the specified value is null
         */
        public boolean contains(Object value) {
            return containsValue(value);
        }
    
        /**
         * Returns an enumeration of the keys in this table.
         *
         * @return an enumeration of the keys in this table
         * @see #keySet()
         */
        public Enumeration<K> keys() {
            Node<K, V>[] t;
            int f = (t = table) == null ? 0 : t.length;
            return new KeyIterator<K, V>(t, f, 0, f, this);
        }
    
        /**
         * Returns an enumeration of the values in this table.
         *
         * @return an enumeration of the values in this table
         * @see #values()
         */
        public Enumeration<V> elements() {
            Node<K, V>[] t;
            int f = (t = table) == null ? 0 : t.length;
            return new ValueIterator<K, V>(t, f, 0, f, this);
        }
    
        // ConcurrentHashMap-only methods
    
        /**
         * Returns the number of mappings. This method should be used
         * instead of {@link #size} because a ConcurrentHashMap may
         * contain more mappings than can be represented as an int. The
         * value returned is an estimate; the actual count may differ if
         * there are concurrent insertions or removals.
         *
         * @return the number of mappings
         * @since 1.8
         */
        public long mappingCount() {
            long n = sumCount();
            return (n < 0L) ? 0L : n; // ignore transient negative values
        }
    
        /**
         * Creates a new {@link Set} backed by a ConcurrentHashMap
         * from the given type to {@code Boolean.TRUE}.
         *
         * @param <K> the element type of the returned set
         * @return the new set
         * @since 1.8
         */
        public static <K> KeySetView<K, Boolean> newKeySet() {
            return new KeySetView<K, Boolean>
                    (new ConcurrentHashMap<K, Boolean>(), Boolean.TRUE);
        }
    
        /**
         * Creates a new {@link Set} backed by a ConcurrentHashMap
         * from the given type to {@code Boolean.TRUE}.
         *
         * @param initialCapacity The implementation performs internal
         *                        sizing to accommodate this many elements.
         * @param <K>             the element type of the returned set
         * @return the new set
         * @throws IllegalArgumentException if the initial capacity of
         *                                  elements is negative
         * @since 1.8
         */
        public static <K> KeySetView<K, Boolean> newKeySet(int initialCapacity) {
            return new KeySetView<K, Boolean>
                    (new ConcurrentHashMap<K, Boolean>(initialCapacity), Boolean.TRUE);
        }
    
        /**
         * Returns a {@link Set} view of the keys in this map, using the
         * given common mapped value for any additions (i.e., {@link
         * Collection#add} and {@link Collection#addAll(Collection)}).
         * This is of course only appropriate if it is acceptable to use
         * the same value for all additions from this view.
         *
         * @param mappedValue the mapped value to use for any additions
         * @return the set view
         * @throws NullPointerException if the mappedValue is null
         */
        public KeySetView<K, V> keySet(V mappedValue) {
            if (mappedValue == null)
                throw new NullPointerException();
            return new KeySetView<K, V>(this, mappedValue);
        }
    
        /* ---------------- Special Nodes -------------- */
    
        /**
         * A node inserted at head of bins during transfer operations.
         */
        static final class ForwardingNode<K, V> extends Node<K, V> {
            final Node<K, V>[] nextTable;
    
            ForwardingNode(Node<K, V>[] tab) {
                super(MOVED, null, null, null);
                this.nextTable = tab;
            }
    
            Node<K, V> find(int h, Object k) {
                // loop to avoid arbitrarily deep recursion on forwarding nodes
                outer:
                for (Node<K, V>[] tab = nextTable; ; ) {
                    Node<K, V> e;
                    int n;
                    if (k == null || tab == null || (n = tab.length) == 0 ||
                            (e = tabAt(tab, (n - 1) & h)) == null)
                        return null;
                    for (; ; ) {
                        int eh;
                        K ek;
                        if ((eh = e.hash) == h &&
                                ((ek = e.key) == k || (ek != null && k.equals(ek))))
                            return e;
                        if (eh < 0) {
                            if (e instanceof ForwardingNode) {
                                tab = ((ForwardingNode<K, V>) e).nextTable;
                                continue outer;
                            } else
                                return e.find(h, k);
                        }
                        if ((e = e.next) == null)
                            return null;
                    }
                }
            }
        }
    
        /**
         * A place-holder node used in computeIfAbsent and compute
         */
        static final class ReservationNode<K, V> extends Node<K, V> {
            ReservationNode() {
                super(RESERVED, null, null, null);
            }
    
            Node<K, V> find(int h, Object k) {
                return null;
            }
        }
    
        /* ---------------- Table Initialization and Resizing -------------- */
    
        /**
         * Returns the stamp bits for resizing a table of size n.
         * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
         */
        static final int resizeStamp(int n) {
            return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
        }
    
        /**
         * Initializes table, using the size recorded in sizeCtl.
         */
        private final Node<K, V>[] initTable() {
            Node<K, V>[] tab;
            int sc;
            while ((tab = table) == null || tab.length == 0) {
                if ((sc = sizeCtl) < 0)
                    Thread.yield(); // lost initialization race; just spin
                else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                    try {
                        if ((tab = table) == null || tab.length == 0) {
                            int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                            @SuppressWarnings("unchecked")
                            Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n];
                            table = tab = nt;
                            sc = n - (n >>> 2);
                        }
                    } finally {
                        sizeCtl = sc;
                    }
                    break;
                }
            }
            return tab;
        }
    
        /**
         * Adds to count, and if table is too small and not already
         * resizing, initiates transfer. If already resizing, helps
         * perform transfer if work is available.  Rechecks occupancy
         * after a transfer to see if another resize is already needed
         * because resizings are lagging additions.
         *
         * @param x     the count to add
         * @param check if <0, don't check resize, if <= 1 only check if uncontended
         */
        private final void addCount(long x, int check) {
            CounterCell[] as;
            long b, s;
            if ((as = counterCells) != null ||
                    !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
                CounterCell a;
                long v;
                int m;
                boolean uncontended = true;
                if (as == null || (m = as.length - 1) < 0 ||
                        (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                        !(uncontended =
                                U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                    fullAddCount(x, uncontended);
                    return;
                }
                if (check <= 1)
                    return;
                s = sumCount();
            }
            if (check >= 0) {
                Node<K, V>[] tab, nt;
                int n, sc;
                while (s >= (long) (sc = sizeCtl) && (tab = table) != null &&
                        (n = tab.length) < MAXIMUM_CAPACITY) {
                    int rs = resizeStamp(n);
                    if (sc < 0) {
                        if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                                sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                                transferIndex <= 0)
                            break;
                        if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                            transfer(tab, nt);
                    } else if (U.compareAndSwapInt(this, SIZECTL, sc,
                            (rs << RESIZE_STAMP_SHIFT) + 2))
                        transfer(tab, null);
                    s = sumCount();
                }
            }
        }
    
        /**
         * Helps transfer if a resize is in progress.
         */
        final Node<K, V>[] helpTransfer(Node<K, V>[] tab, Node<K, V> f) {
            Node<K, V>[] nextTab;
            int sc;
            if (tab != null && (f instanceof ForwardingNode) &&
                    (nextTab = ((ForwardingNode<K, V>) f).nextTable) != null) {
                int rs = resizeStamp(tab.length);
                while (nextTab == nextTable && table == tab &&
                        (sc = sizeCtl) < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                        transfer(tab, nextTab);
                        break;
                    }
                }
                return nextTab;
            }
            return table;
        }
    
        /**
         * Tries to presize table to accommodate the given number of elements.
         *
         * @param size number of elements (doesn't need to be perfectly accurate)
         */
        private final void tryPresize(int size) {
            int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
                    tableSizeFor(size + (size >>> 1) + 1);
            int sc;
            while ((sc = sizeCtl) >= 0) {
                Node<K, V>[] tab = table;
                int n;
                if (tab == null || (n = tab.length) == 0) {
                    n = (sc > c) ? sc : c;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                        try {
                            if (table == tab) {
                                @SuppressWarnings("unchecked")
                                Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n];
                                table = nt;
                                sc = n - (n >>> 2);
                            }
                        } finally {
                            sizeCtl = sc;
                        }
                    }
                } else if (c <= sc || n >= MAXIMUM_CAPACITY)
                    break;
                else if (tab == table) {
                    int rs = resizeStamp(n);
                    if (sc < 0) {
                        Node<K, V>[] nt;
                        if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                                sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                                transferIndex <= 0)
                            break;
                        if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                            transfer(tab, nt);
                    } else if (U.compareAndSwapInt(this, SIZECTL, sc,
                            (rs << RESIZE_STAMP_SHIFT) + 2))
                        transfer(tab, null);
                }
            }
        }
    
        /**
         * Moves and/or copies the nodes in each bin to new table. See
         * above for explanation.
         */
        private final void transfer(Node<K, V>[] tab, Node<K, V>[] nextTab) {
            int n = tab.length, stride;
            if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
                stride = MIN_TRANSFER_STRIDE; // subdivide range
            if (nextTab == null) {            // initiating
                try {
                    @SuppressWarnings("unchecked")
                    Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n << 1];
                    nextTab = nt;
                } catch (Throwable ex) {      // try to cope with OOME
                    sizeCtl = Integer.MAX_VALUE;
                    return;
                }
                nextTable = nextTab;
                transferIndex = n;
            }
            int nextn = nextTab.length;
            ForwardingNode<K, V> fwd = new ForwardingNode<K, V>(nextTab);
            boolean advance = true;
            boolean finishing = false; // to ensure sweep before committing nextTab
            for (int i = 0, bound = 0; ; ) {
                Node<K, V> f;
                int fh;
                while (advance) {
                    int nextIndex, nextBound;
                    if (--i >= bound || finishing)
                        advance = false;
                    else if ((nextIndex = transferIndex) <= 0) {
                        i = -1;
                        advance = false;
                    } else if (U.compareAndSwapInt
                            (this, TRANSFERINDEX, nextIndex,
                                    nextBound = (nextIndex > stride ?
                                            nextIndex - stride : 0))) {
                        bound = nextBound;
                        i = nextIndex - 1;
                        advance = false;
                    }
                }
                if (i < 0 || i >= n || i + n >= nextn) {
                    int sc;
                    if (finishing) {
                        nextTable = null;
                        table = nextTab;
                        sizeCtl = (n << 1) - (n >>> 1);
                        return;
                    }
                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                        if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                            return;
                        finishing = advance = true;
                        i = n; // recheck before commit
                    }
                } else if ((f = tabAt(tab, i)) == null)
                    advance = casTabAt(tab, i, null, fwd);
                else if ((fh = f.hash) == MOVED)
                    advance = true; // already processed
                else {
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            Node<K, V> ln, hn;
                            if (fh >= 0) {
                                int runBit = fh & n;
                                Node<K, V> lastRun = f;
                                for (Node<K, V> p = f.next; p != null; p = p.next) {
                                    int b = p.hash & n;
                                    if (b != runBit) {
                                        runBit = b;
                                        lastRun = p;
                                    }
                                }
                                if (runBit == 0) {
                                    ln = lastRun;
                                    hn = null;
                                } else {
                                    hn = lastRun;
                                    ln = null;
                                }
                                for (Node<K, V> p = f; p != lastRun; p = p.next) {
                                    int ph = p.hash;
                                    K pk = p.key;
                                    V pv = p.val;
                                    if ((ph & n) == 0)
                                        ln = new Node<K, V>(ph, pk, pv, ln);
                                    else
                                        hn = new Node<K, V>(ph, pk, pv, hn);
                                }
                                setTabAt(nextTab, i, ln);
                                setTabAt(nextTab, i + n, hn);
                                setTabAt(tab, i, fwd);
                                advance = true;
                            } else if (f instanceof TreeBin) {
                                TreeBin<K, V> t = (TreeBin<K, V>) f;
                                TreeNode<K, V> lo = null, loTail = null;
                                TreeNode<K, V> hi = null, hiTail = null;
                                int lc = 0, hc = 0;
                                for (Node<K, V> e = t.first; e != null; e = e.next) {
                                    int h = e.hash;
                                    TreeNode<K, V> p = new TreeNode<K, V>
                                            (h, e.key, e.val, null, null);
                                    if ((h & n) == 0) {
                                        if ((p.prev = loTail) == null)
                                            lo = p;
                                        else
                                            loTail.next = p;
                                        loTail = p;
                                        ++lc;
                                    } else {
                                        if ((p.prev = hiTail) == null)
                                            hi = p;
                                        else
                                            hiTail.next = p;
                                        hiTail = p;
                                        ++hc;
                                    }
                                }
                                ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                        (hc != 0) ? new TreeBin<K, V>(lo) : t;
                                hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                        (lc != 0) ? new TreeBin<K, V>(hi) : t;
                                setTabAt(nextTab, i, ln);
                                setTabAt(nextTab, i + n, hn);
                                setTabAt(tab, i, fwd);
                                advance = true;
                            }
                        }
                    }
                }
            }
        }
    
        /* ---------------- Counter support -------------- */
    
        /**
         * A padded cell for distributing counts.  Adapted from LongAdder
         * and Striped64.  See their internal docs for explanation.
         */
        @sun.misc.Contended
        static final class CounterCell {
            volatile long value;
    
            CounterCell(long x) {
                value = x;
            }
        }
    
        final long sumCount() {
            CounterCell[] as = counterCells;
            CounterCell a;
            long sum = baseCount;
            if (as != null) {
                for (int i = 0; i < as.length; ++i) {
                    if ((a = as[i]) != null)
                        sum += a.value;
                }
            }
            return sum;
        }
    
        // See LongAdder version for explanation
        private final void fullAddCount(long x, boolean wasUncontended) {
            int h;
            if ((h = ThreadLocalRandom.getProbe()) == 0) {
                ThreadLocalRandom.localInit();      // force initialization
                h = ThreadLocalRandom.getProbe();
                wasUncontended = true;
            }
            boolean collide = false;                // True if last slot nonempty
            for (; ; ) {
                CounterCell[] as;
                CounterCell a;
                int n;
                long v;
                if ((as = counterCells) != null && (n = as.length) > 0) {
                    if ((a = as[(n - 1) & h]) == null) {
                        if (cellsBusy == 0) {            // Try to attach new Cell
                            CounterCell r = new CounterCell(x); // Optimistic create
                            if (cellsBusy == 0 &&
                                    U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                                boolean created = false;
                                try {               // Recheck under lock
                                    CounterCell[] rs;
                                    int m, j;
                                    if ((rs = counterCells) != null &&
                                            (m = rs.length) > 0 &&
                                            rs[j = (m - 1) & h] == null) {
                                        rs[j] = r;
                                        created = true;
                                    }
                                } finally {
                                    cellsBusy = 0;
                                }
                                if (created)
                                    break;
                                continue;           // Slot is now non-empty
                            }
                        }
                        collide = false;
                    } else if (!wasUncontended)       // CAS already known to fail
                        wasUncontended = true;      // Continue after rehash
                    else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
                        break;
                    else if (counterCells != as || n >= NCPU)
                        collide = false;            // At max size or stale
                    else if (!collide)
                        collide = true;
                    else if (cellsBusy == 0 &&
                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                        try {
                            if (counterCells == as) {// Expand table unless stale
                                CounterCell[] rs = new CounterCell[n << 1];
                                for (int i = 0; i < n; ++i)
                                    rs[i] = as[i];
                                counterCells = rs;
                            }
                        } finally {
                            cellsBusy = 0;
                        }
                        collide = false;
                        continue;                   // Retry with expanded table
                    }
                    h = ThreadLocalRandom.advanceProbe(h);
                } else if (cellsBusy == 0 && counterCells == as &&
                        U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                    boolean init = false;
                    try {                           // Initialize table
                        if (counterCells == as) {
                            CounterCell[] rs = new CounterCell[2];
                            rs[h & 1] = new CounterCell(x);
                            counterCells = rs;
                            init = true;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    if (init)
                        break;
                } else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
                    break;                          // Fall back on using base
            }
        }
    
        /* ---------------- Conversion from/to TreeBins -------------- */
    
        /**
         * Replaces all linked nodes in bin at given index unless table is
         * too small, in which case resizes instead.
         */
        private final void treeifyBin(Node<K, V>[] tab, int index) {
            Node<K, V> b;
            int n, sc;
            if (tab != null) {
                if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                    tryPresize(n << 1);
                else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                    synchronized (b) {
                        if (tabAt(tab, index) == b) {
                            TreeNode<K, V> hd = null, tl = null;
                            for (Node<K, V> e = b; e != null; e = e.next) {
                                TreeNode<K, V> p =
                                        new TreeNode<K, V>(e.hash, e.key, e.val,
                                                null, null);
                                if ((p.prev = tl) == null)
                                    hd = p;
                                else
                                    tl.next = p;
                                tl = p;
                            }
                            setTabAt(tab, index, new TreeBin<K, V>(hd));
                        }
                    }
                }
            }
        }
    
        /**
         * Returns a list on non-TreeNodes replacing those in given list.
         */
        static <K, V> Node<K, V> untreeify(Node<K, V> b) {
            Node<K, V> hd = null, tl = null;
            for (Node<K, V> q = b; q != null; q = q.next) {
                Node<K, V> p = new Node<K, V>(q.hash, q.key, q.val, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }
    
        /* ---------------- TreeNodes -------------- */
    
        /**
         * Nodes for use in TreeBins
         */
        static final class TreeNode<K, V> extends Node<K, V> {
            TreeNode<K, V> parent;  // red-black tree links
            TreeNode<K, V> left;
            TreeNode<K, V> right;
            TreeNode<K, V> prev;    // needed to unlink next upon deletion
            boolean red;
    
            TreeNode(int hash, K key, V val, Node<K, V> next,
                     TreeNode<K, V> parent) {
                super(hash, key, val, next);
                this.parent = parent;
            }
    
            Node<K, V> find(int h, Object k) {
                return findTreeNode(h, k, null);
            }
    
            /**
             * Returns the TreeNode (or null if not found) for the given key
             * starting at given root.
             */
            final TreeNode<K, V> findTreeNode(int h, Object k, Class<?> kc) {
                if (k != null) {
                    TreeNode<K, V> p = this;
                    do {
                        int ph, dir;
                        K pk;
                        TreeNode<K, V> q;
                        TreeNode<K, V> pl = p.left, pr = p.right;
                        if ((ph = p.hash) > h)
                            p = pl;
                        else if (ph < h)
                            p = pr;
                        else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                            return p;
                        else if (pl == null)
                            p = pr;
                        else if (pr == null)
                            p = pl;
                        else if ((kc != null ||
                                (kc = comparableClassFor(k)) != null) &&
                                (dir = compareComparables(kc, k, pk)) != 0)
                            p = (dir < 0) ? pl : pr;
                        else if ((q = pr.findTreeNode(h, k, kc)) != null)
                            return q;
                        else
                            p = pl;
                    } while (p != null);
                }
                return null;
            }
        }
    
        /* ---------------- TreeBins -------------- */
    
        /**
         * TreeNodes used at the heads of bins. TreeBins do not hold user
         * keys or values, but instead point to list of TreeNodes and
         * their root. They also maintain a parasitic read-write lock
         * forcing writers (who hold bin lock) to wait for readers (who do
         * not) to complete before tree restructuring operations.
         */
        static final class TreeBin<K, V> extends Node<K, V> {
            TreeNode<K, V> root;
            volatile TreeNode<K, V> first;
            volatile Thread waiter;
            volatile int lockState;
            // values for lockState
            static final int WRITER = 1; // set while holding write lock
            static final int WAITER = 2; // set when waiting for write lock
            static final int READER = 4; // increment value for setting read lock
    
            /**
             * Tie-breaking utility for ordering insertions when equal
             * hashCodes and non-comparable. We don't require a total
             * order, just a consistent insertion rule to maintain
             * equivalence across rebalancings. Tie-breaking further than
             * necessary simplifies testing a bit.
             */
            static int tieBreakOrder(Object a, Object b) {
                int d;
                if (a == null || b == null ||
                        (d = a.getClass().getName().
                                compareTo(b.getClass().getName())) == 0)
                    d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                            -1 : 1);
                return d;
            }
    
            /**
             * Creates bin with initial set of nodes headed by b.
             */
            TreeBin(TreeNode<K, V> b) {
                super(TREEBIN, null, null, null);
                this.first = b;
                TreeNode<K, V> r = null;
                for (TreeNode<K, V> x = b, next; x != null; x = next) {
                    next = (TreeNode<K, V>) x.next;
                    x.left = x.right = null;
                    if (r == null) {
                        x.parent = null;
                        x.red = false;
                        r = x;
                    } else {
                        K k = x.key;
                        int h = x.hash;
                        Class<?> kc = null;
                        for (TreeNode<K, V> p = r; ; ) {
                            int dir, ph;
                            K pk = p.key;
                            if ((ph = p.hash) > h)
                                dir = -1;
                            else if (ph < h)
                                dir = 1;
                            else if ((kc == null &&
                                    (kc = comparableClassFor(k)) == null) ||
                                    (dir = compareComparables(kc, k, pk)) == 0)
                                dir = tieBreakOrder(k, pk);
                            TreeNode<K, V> xp = p;
                            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                                x.parent = xp;
                                if (dir <= 0)
                                    xp.left = x;
                                else
                                    xp.right = x;
                                r = balanceInsertion(r, x);
                                break;
                            }
                        }
                    }
                }
                this.root = r;
                assert checkInvariants(root);
            }
    
            /**
             * Acquires write lock for tree restructuring.
             */
            private final void lockRoot() {
                if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
                    contendedLock(); // offload to separate method
            }
    
            /**
             * Releases write lock for tree restructuring.
             */
            private final void unlockRoot() {
                lockState = 0;
            }
    
            /**
             * Possibly blocks awaiting root lock.
             */
            private final void contendedLock() {
                boolean waiting = false;
                for (int s; ; ) {
                    if (((s = lockState) & ~WAITER) == 0) {
                        if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
                            if (waiting)
                                waiter = null;
                            return;
                        }
                    } else if ((s & WAITER) == 0) {
                        if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
                            waiting = true;
                            waiter = Thread.currentThread();
                        }
                    } else if (waiting)
                        LockSupport.park(this);
                }
            }
    
            /**
             * Returns matching node or null if none. Tries to search
             * using tree comparisons from root, but continues linear
             * search when lock not available.
             */
            final Node<K, V> find(int h, Object k) {
                if (k != null) {
                    for (Node<K, V> e = first; e != null; ) {
                        int s;
                        K ek;
                        if (((s = lockState) & (WAITER | WRITER)) != 0) {
                            if (e.hash == h &&
                                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                                return e;
                            e = e.next;
                        } else if (U.compareAndSwapInt(this, LOCKSTATE, s,
                                s + READER)) {
                            TreeNode<K, V> r, p;
                            try {
                                p = ((r = root) == null ? null :
                                        r.findTreeNode(h, k, null));
                            } finally {
                                Thread w;
                                if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
                                        (READER | WAITER) && (w = waiter) != null)
                                    LockSupport.unpark(w);
                            }
                            return p;
                        }
                    }
                }
                return null;
            }
    
            /**
             * Finds or adds a node.
             *
             * @return null if added
             */
            final TreeNode<K, V> putTreeVal(int h, K k, V v) {
                Class<?> kc = null;
                boolean searched = false;
                for (TreeNode<K, V> p = root; ; ) {
                    int dir, ph;
                    K pk;
                    if (p == null) {
                        first = root = new TreeNode<K, V>(h, k, v, null, null);
                        break;
                    } else if ((ph = p.hash) > h)
                        dir = -1;
                    else if (ph < h)
                        dir = 1;
                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                        return p;
                    else if ((kc == null &&
                            (kc = comparableClassFor(k)) == null) ||
                            (dir = compareComparables(kc, k, pk)) == 0) {
                        if (!searched) {
                            TreeNode<K, V> q, ch;
                            searched = true;
                            if (((ch = p.left) != null &&
                                    (q = ch.findTreeNode(h, k, kc)) != null) ||
                                    ((ch = p.right) != null &&
                                            (q = ch.findTreeNode(h, k, kc)) != null))
                                return q;
                        }
                        dir = tieBreakOrder(k, pk);
                    }
    
                    TreeNode<K, V> xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        TreeNode<K, V> x, f = first;
                        first = x = new TreeNode<K, V>(h, k, v, f, xp);
                        if (f != null)
                            f.prev = x;
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        if (!xp.red)
                            x.red = true;
                        else {
                            lockRoot();
                            try {
                                root = balanceInsertion(root, x);
                            } finally {
                                unlockRoot();
                            }
                        }
                        break;
                    }
                }
                assert checkInvariants(root);
                return null;
            }
    
            /**
             * Removes the given node, that must be present before this
             * call.  This is messier than typical red-black deletion code
             * because we cannot swap the contents of an interior node
             * with a leaf successor that is pinned by "next" pointers
             * that are accessible independently of lock. So instead we
             * swap the tree linkages.
             *
             * @return true if now too small, so should be untreeified
             */
            final boolean removeTreeNode(TreeNode<K, V> p) {
                TreeNode<K, V> next = (TreeNode<K, V>) p.next;
                TreeNode<K, V> pred = p.prev;  // unlink traversal pointers
                TreeNode<K, V> r, rl;
                if (pred == null)
                    first = next;
                else
                    pred.next = next;
                if (next != null)
                    next.prev = pred;
                if (first == null) {
                    root = null;
                    return true;
                }
                if ((r = root) == null || r.right == null || // too small
                        (rl = r.left) == null || rl.left == null)
                    return true;
                lockRoot();
                try {
                    TreeNode<K, V> replacement;
                    TreeNode<K, V> pl = p.left;
                    TreeNode<K, V> pr = p.right;
                    if (pl != null && pr != null) {
                        TreeNode<K, V> s = pr, sl;
                        while ((sl = s.left) != null) // find successor
                            s = sl;
                        boolean c = s.red;
                        s.red = p.red;
                        p.red = c; // swap colors
                        TreeNode<K, V> sr = s.right;
                        TreeNode<K, V> pp = p.parent;
                        if (s == pr) { // p was s's direct parent
                            p.parent = s;
                            s.right = p;
                        } else {
                            TreeNode<K, V> sp = s.parent;
                            if ((p.parent = sp) != null) {
                                if (s == sp.left)
                                    sp.left = p;
                                else
                                    sp.right = p;
                            }
                            if ((s.right = pr) != null)
                                pr.parent = s;
                        }
                        p.left = null;
                        if ((p.right = sr) != null)
                            sr.parent = p;
                        if ((s.left = pl) != null)
                            pl.parent = s;
                        if ((s.parent = pp) == null)
                            r = s;
                        else if (p == pp.left)
                            pp.left = s;
                        else
                            pp.right = s;
                        if (sr != null)
                            replacement = sr;
                        else
                            replacement = p;
                    } else if (pl != null)
                        replacement = pl;
                    else if (pr != null)
                        replacement = pr;
                    else
                        replacement = p;
                    if (replacement != p) {
                        TreeNode<K, V> pp = replacement.parent = p.parent;
                        if (pp == null)
                            r = replacement;
                        else if (p == pp.left)
                            pp.left = replacement;
                        else
                            pp.right = replacement;
                        p.left = p.right = p.parent = null;
                    }
    
                    root = (p.red) ? r : balanceDeletion(r, replacement);
    
                    if (p == replacement) {  // detach pointers
                        TreeNode<K, V> pp;
                        if ((pp = p.parent) != null) {
                            if (p == pp.left)
                                pp.left = null;
                            else if (p == pp.right)
                                pp.right = null;
                            p.parent = null;
                        }
                    }
                } finally {
                    unlockRoot();
                }
                assert checkInvariants(root);
                return false;
            }
    
            /* ------------------------------------------------------------ */
            // Red-black tree methods, all adapted from CLR
    
            static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root,
                                                    TreeNode<K, V> p) {
                TreeNode<K, V> r, pp, rl;
                if (p != null && (r = p.right) != null) {
                    if ((rl = p.right = r.left) != null)
                        rl.parent = p;
                    if ((pp = r.parent = p.parent) == null)
                        (root = r).red = false;
                    else if (pp.left == p)
                        pp.left = r;
                    else
                        pp.right = r;
                    r.left = p;
                    p.parent = r;
                }
                return root;
            }
    
            static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root,
                                                     TreeNode<K, V> p) {
                TreeNode<K, V> l, pp, lr;
                if (p != null && (l = p.left) != null) {
                    if ((lr = p.left = l.right) != null)
                        lr.parent = p;
                    if ((pp = l.parent = p.parent) == null)
                        (root = l).red = false;
                    else if (pp.right == p)
                        pp.right = l;
                    else
                        pp.left = l;
                    l.right = p;
                    p.parent = l;
                }
                return root;
            }
    
            static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root,
                                                          TreeNode<K, V> x) {
                x.red = true;
                for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {
                    if ((xp = x.parent) == null) {
                        x.red = false;
                        return x;
                    } else if (!xp.red || (xpp = xp.parent) == null)
                        return root;
                    if (xp == (xppl = xpp.left)) {
                        if ((xppr = xpp.right) != null && xppr.red) {
                            xppr.red = false;
                            xp.red = false;
                            xpp.red = true;
                            x = xpp;
                        } else {
                            if (x == xp.right) {
                                root = rotateLeft(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    root = rotateRight(root, xpp);
                                }
                            }
                        }
                    } else {
                        if (xppl != null && xppl.red) {
                            xppl.red = false;
                            xp.red = false;
                            xpp.red = true;
                            x = xpp;
                        } else {
                            if (x == xp.left) {
                                root = rotateRight(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    root = rotateLeft(root, xpp);
                                }
                            }
                        }
                    }
                }
            }
    
            static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root,
                                                         TreeNode<K, V> x) {
                for (TreeNode<K, V> xp, xpl, xpr; ; ) {
                    if (x == null || x == root)
                        return root;
                    else if ((xp = x.parent) == null) {
                        x.red = false;
                        return x;
                    } else if (x.red) {
                        x.red = false;
                        return root;
                    } else if ((xpl = xp.left) == x) {
                        if ((xpr = xp.right) != null && xpr.red) {
                            xpr.red = false;
                            xp.red = true;
                            root = rotateLeft(root, xp);
                            xpr = (xp = x.parent) == null ? null : xp.right;
                        }
                        if (xpr == null)
                            x = xp;
                        else {
                            TreeNode<K, V> sl = xpr.left, sr = xpr.right;
                            if ((sr == null || !sr.red) &&
                                    (sl == null || !sl.red)) {
                                xpr.red = true;
                                x = xp;
                            } else {
                                if (sr == null || !sr.red) {
                                    if (sl != null)
                                        sl.red = false;
                                    xpr.red = true;
                                    root = rotateRight(root, xpr);
                                    xpr = (xp = x.parent) == null ?
                                            null : xp.right;
                                }
                                if (xpr != null) {
                                    xpr.red = (xp == null) ? false : xp.red;
                                    if ((sr = xpr.right) != null)
                                        sr.red = false;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    root = rotateLeft(root, xp);
                                }
                                x = root;
                            }
                        }
                    } else { // symmetric
                        if (xpl != null && xpl.red) {
                            xpl.red = false;
                            xp.red = true;
                            root = rotateRight(root, xp);
                            xpl = (xp = x.parent) == null ? null : xp.left;
                        }
                        if (xpl == null)
                            x = xp;
                        else {
                            TreeNode<K, V> sl = xpl.left, sr = xpl.right;
                            if ((sl == null || !sl.red) &&
                                    (sr == null || !sr.red)) {
                                xpl.red = true;
                                x = xp;
                            } else {
                                if (sl == null || !sl.red) {
                                    if (sr != null)
                                        sr.red = false;
                                    xpl.red = true;
                                    root = rotateLeft(root, xpl);
                                    xpl = (xp = x.parent) == null ?
                                            null : xp.left;
                                }
                                if (xpl != null) {
                                    xpl.red = (xp == null) ? false : xp.red;
                                    if ((sl = xpl.left) != null)
                                        sl.red = false;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    root = rotateRight(root, xp);
                                }
                                x = root;
                            }
                        }
                    }
                }
            }
    
            /**
             * Recursive invariant check
             */
            static <K, V> boolean checkInvariants(TreeNode<K, V> t) {
                TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right,
                        tb = t.prev, tn = (TreeNode<K, V>) t.next;
                if (tb != null && tb.next != t)
                    return false;
                if (tn != null && tn.prev != t)
                    return false;
                if (tp != null && t != tp.left && t != tp.right)
                    return false;
                if (tl != null && (tl.parent != t || tl.hash > t.hash))
                    return false;
                if (tr != null && (tr.parent != t || tr.hash < t.hash))
                    return false;
                if (t.red && tl != null && tl.red && tr != null && tr.red)
                    return false;
                if (tl != null && !checkInvariants(tl))
                    return false;
                if (tr != null && !checkInvariants(tr))
                    return false;
                return true;
            }
    
            private static final sun.misc.Unsafe U;
            private static final long LOCKSTATE;
    
            static {
                try {
                    U = sun.misc.Unsafe.getUnsafe();
                    Class<?> k = TreeBin.class;
                    LOCKSTATE = U.objectFieldOffset
                            (k.getDeclaredField("lockState"));
                } catch (Exception e) {
                    throw new Error(e);
                }
            }
        }
    
        /* ----------------Table Traversal -------------- */
    
        /**
         * Records the table, its length, and current traversal index for a
         * traverser that must process a region of a forwarded table before
         * proceeding with current table.
         */
        static final class TableStack<K, V> {
            int length;
            int index;
            Node<K, V>[] tab;
            TableStack<K, V> next;
        }
    
        /**
         * Encapsulates traversal for methods such as containsValue; also
         * serves as a base class for other iterators and spliterators.
         * <p>
         * Method advance visits once each still-valid node that was
         * reachable upon iterator construction. It might miss some that
         * were added to a bin after the bin was visited, which is OK wrt
         * consistency guarantees. Maintaining this property in the face
         * of possible ongoing resizes requires a fair amount of
         * bookkeeping state that is difficult to optimize away amidst
         * volatile accesses.  Even so, traversal maintains reasonable
         * throughput.
         * <p>
         * Normally, iteration proceeds bin-by-bin traversing lists.
         * However, if the table has been resized, then all future steps
         * must traverse both the bin at the current index as well as at
         * (index + baseSize); and so on for further resizings. To
         * paranoically cope with potential sharing by users of iterators
         * across threads, iteration terminates if a bounds checks fails
         * for a table read.
         */
        static class Traverser<K, V> {
            Node<K, V>[] tab;        // current table; updated if resized
            Node<K, V> next;         // the next entry to use
            TableStack<K, V> stack, spare; // to save/restore on ForwardingNodes
            int index;              // index of bin to use next
            int baseIndex;          // current index of initial table
            int baseLimit;          // index bound for initial table
            final int baseSize;     // initial table size
    
            Traverser(Node<K, V>[] tab, int size, int index, int limit) {
                this.tab = tab;
                this.baseSize = size;
                this.baseIndex = this.index = index;
                this.baseLimit = limit;
                this.next = null;
            }
    
            /**
             * Advances if possible, returning next valid node, or null if none.
             */
            final Node<K, V> advance() {
                Node<K, V> e;
                if ((e = next) != null)
                    e = e.next;
                for (; ; ) {
                    Node<K, V>[] t;
                    int i, n;  // must use locals in checks
                    if (e != null)
                        return next = e;
                    if (baseIndex >= baseLimit || (t = tab) == null ||
                            (n = t.length) <= (i = index) || i < 0)
                        return next = null;
                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
                        if (e instanceof ForwardingNode) {
                            tab = ((ForwardingNode<K, V>) e).nextTable;
                            e = null;
                            pushState(t, i, n);
                            continue;
                        } else if (e instanceof TreeBin)
                            e = ((TreeBin<K, V>) e).first;
                        else
                            e = null;
                    }
                    if (stack != null)
                        recoverState(n);
                    else if ((index = i + baseSize) >= n)
                        index = ++baseIndex; // visit upper slots if present
                }
            }
    
            /**
             * Saves traversal state upon encountering a forwarding node.
             */
            private void pushState(Node<K, V>[] t, int i, int n) {
                TableStack<K, V> s = spare;  // reuse if possible
                if (s != null)
                    spare = s.next;
                else
                    s = new TableStack<K, V>();
                s.tab = t;
                s.length = n;
                s.index = i;
                s.next = stack;
                stack = s;
            }
    
            /**
             * Possibly pops traversal state.
             *
             * @param n length of current table
             */
            private void recoverState(int n) {
                TableStack<K, V> s;
                int len;
                while ((s = stack) != null && (index += (len = s.length)) >= n) {
                    n = len;
                    index = s.index;
                    tab = s.tab;
                    s.tab = null;
                    TableStack<K, V> next = s.next;
                    s.next = spare; // save for reuse
                    stack = next;
                    spare = s;
                }
                if (s == null && (index += baseSize) >= n)
                    index = ++baseIndex;
            }
        }
    
        /**
         * Base of key, value, and entry Iterators. Adds fields to
         * Traverser to support iterator.remove.
         */
        static class BaseIterator<K, V> extends Traverser<K, V> {
            final ConcurrentHashMap<K, V> map;
            Node<K, V> lastReturned;
    
            BaseIterator(Node<K, V>[] tab, int size, int index, int limit,
                         ConcurrentHashMap<K, V> map) {
                super(tab, size, index, limit);
                this.map = map;
                advance();
            }
    
            public final boolean hasNext() {
                return next != null;
            }
    
            public final boolean hasMoreElements() {
                return next != null;
            }
    
            public final void remove() {
                Node<K, V> p;
                if ((p = lastReturned) == null)
                    throw new IllegalStateException();
                lastReturned = null;
                map.replaceNode(p.key, null, null);
            }
        }
    
        static final class KeyIterator<K, V> extends BaseIterator<K, V>
                implements Iterator<K>, Enumeration<K> {
            KeyIterator(Node<K, V>[] tab, int index, int size, int limit,
                        ConcurrentHashMap<K, V> map) {
                super(tab, index, size, limit, map);
            }
    
            public final K next() {
                Node<K, V> p;
                if ((p = next) == null)
                    throw new NoSuchElementException();
                K k = p.key;
                lastReturned = p;
                advance();
                return k;
            }
    
            public final K nextElement() {
                return next();
            }
        }
    
        static final class ValueIterator<K, V> extends BaseIterator<K, V>
                implements Iterator<V>, Enumeration<V> {
            ValueIterator(Node<K, V>[] tab, int index, int size, int limit,
                          ConcurrentHashMap<K, V> map) {
                super(tab, index, size, limit, map);
            }
    
            public final V next() {
                Node<K, V> p;
                if ((p = next) == null)
                    throw new NoSuchElementException();
                V v = p.val;
                lastReturned = p;
                advance();
                return v;
            }
    
            public final V nextElement() {
                return next();
            }
        }
    
        static final class EntryIterator<K, V> extends BaseIterator<K, V>
                implements Iterator<Map.Entry<K, V>> {
            EntryIterator(Node<K, V>[] tab, int index, int size, int limit,
                          ConcurrentHashMap<K, V> map) {
                super(tab, index, size, limit, map);
            }
    
            public final Map.Entry<K, V> next() {
                Node<K, V> p;
                if ((p = next) == null)
                    throw new NoSuchElementException();
                K k = p.key;
                V v = p.val;
                lastReturned = p;
                advance();
                return new MapEntry<K, V>(k, v, map);
            }
        }
    
        /**
         * Exported Entry for EntryIterator
         */
        static final class MapEntry<K, V> implements Map.Entry<K, V> {
            final K key; // non-null
            V val;       // non-null
            final ConcurrentHashMap<K, V> map;
    
            MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
                this.key = key;
                this.val = val;
                this.map = map;
            }
    
            public K getKey() {
                return key;
            }
    
            public V getValue() {
                return val;
            }
    
            public int hashCode() {
                return key.hashCode() ^ val.hashCode();
            }
    
            public String toString() {
                return key + "=" + val;
            }
    
            public boolean equals(Object o) {
                Object k, v;
                Map.Entry<?, ?> e;
                return ((o instanceof Map.Entry) &&
                        (k = (e = (Map.Entry<?, ?>) o).getKey()) != null &&
                        (v = e.getValue()) != null &&
                        (k == key || k.equals(key)) &&
                        (v == val || v.equals(val)));
            }
    
            /**
             * Sets our entry's value and writes through to the map. The
             * value to return is somewhat arbitrary here. Since we do not
             * necessarily track asynchronous changes, the most recent
             * "previous" value could be different from what we return (or
             * could even have been removed, in which case the put will
             * re-establish). We do not and cannot guarantee more.
             */
            public V setValue(V value) {
                if (value == null) throw new NullPointerException();
                V v = val;
                val = value;
                map.put(key, value);
                return v;
            }
        }
    
        static final class KeySpliterator<K, V> extends Traverser<K, V>
                implements Spliterator<K> {
            long est;               // size estimate
    
            KeySpliterator(Node<K, V>[] tab, int size, int index, int limit,
                           long est) {
                super(tab, size, index, limit);
                this.est = est;
            }
    
            public Spliterator<K> trySplit() {
                int i, f, h;
                return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
                        new KeySpliterator<K, V>(tab, baseSize, baseLimit = h,
                                f, est >>>= 1);
            }
    
            public void forEachRemaining(Consumer<? super K> action) {
                if (action == null) throw new NullPointerException();
                for (Node<K, V> p; (p = advance()) != null; )
                    action.accept(p.key);
            }
    
            public boolean tryAdvance(Consumer<? super K> action) {
                if (action == null) throw new NullPointerException();
                Node<K, V> p;
                if ((p = advance()) == null)
                    return false;
                action.accept(p.key);
                return true;
            }
    
            public long estimateSize() {
                return est;
            }
    
            public int characteristics() {
                return Spliterator.DISTINCT | Spliterator.CONCURRENT |
                        Spliterator.NONNULL;
            }
        }
    
        static final class ValueSpliterator<K, V> extends Traverser<K, V>
                implements Spliterator<V> {
            long est;               // size estimate
    
            ValueSpliterator(Node<K, V>[] tab, int size, int index, int limit,
                             long est) {
                super(tab, size, index, limit);
                this.est = est;
            }
    
            public Spliterator<V> trySplit() {
                int i, f, h;
                return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
                        new ValueSpliterator<K, V>(tab, baseSize, baseLimit = h,
                                f, est >>>= 1);
            }
    
            public void forEachRemaining(Consumer<? super V> action) {
                if (action == null) throw new NullPointerException();
                for (Node<K, V> p; (p = advance()) != null; )
                    action.accept(p.val);
            }
    
            public boolean tryAdvance(Consumer<? super V> action) {
                if (action == null) throw new NullPointerException();
                Node<K, V> p;
                if ((p = advance()) == null)
                    return false;
                action.accept(p.val);
                return true;
            }
    
            public long estimateSize() {
                return est;
            }
    
            public int characteristics() {
                return Spliterator.CONCURRENT | Spliterator.NONNULL;
            }
        }
    
        static final class EntrySpliterator<K, V> extends Traverser<K, V>
                implements Spliterator<Map.Entry<K, V>> {
            final ConcurrentHashMap<K, V> map; // To export MapEntry
            long est;               // size estimate
    
            EntrySpliterator(Node<K, V>[] tab, int size, int index, int limit,
                             long est, ConcurrentHashMap<K, V> map) {
                super(tab, size, index, limit);
                this.map = map;
                this.est = est;
            }
    
            public Spliterator<Map.Entry<K, V>> trySplit() {
                int i, f, h;
                return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
                        new EntrySpliterator<K, V>(tab, baseSize, baseLimit = h,
                                f, est >>>= 1, map);
            }
    
            public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
                if (action == null) throw new NullPointerException();
                for (Node<K, V> p; (p = advance()) != null; )
                    action.accept(new MapEntry<K, V>(p.key, p.val, map));
            }
    
            public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action) {
                if (action == null) throw new NullPointerException();
                Node<K, V> p;
                if ((p = advance()) == null)
                    return false;
                action.accept(new MapEntry<K, V>(p.key, p.val, map));
                return true;
            }
    
            public long estimateSize() {
                return est;
            }
    
            public int characteristics() {
                return Spliterator.DISTINCT | Spliterator.CONCURRENT |
                        Spliterator.NONNULL;
            }
        }
    
        // Parallel bulk operations
    
        /**
         * Computes initial batch value for bulk tasks. The returned value
         * is approximately exp2 of the number of times (minus one) to
         * split task by two before executing leaf action. This value is
         * faster to compute and more convenient to use as a guide to
         * splitting than is the depth, since it is used while dividing by
         * two anyway.
         */
        final int batchFor(long b) {
            long n;
            if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
                return 0;
            int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
            return (b <= 0L || (n /= b) >= sp) ? sp : (int) n;
        }
    
        /**
         * Performs the given action for each (key, value).
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param action               the action
         * @since 1.8
         */
        public void forEach(long parallelismThreshold,
                            BiConsumer<? super K, ? super V> action) {
            if (action == null) throw new NullPointerException();
            new ForEachMappingTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            action).invoke();
        }
    
        /**
         * Performs the given action for each non-null transformation
         * of each (key, value).
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element, or null if there is no transformation (in
         *                             which case the action is not applied)
         * @param action               the action
         * @param <U>                  the return type of the transformer
         * @since 1.8
         */
        public <U> void forEach(long parallelismThreshold,
                                BiFunction<? super K, ? super V, ? extends U> transformer,
                                Consumer<? super U> action) {
            if (transformer == null || action == null)
                throw new NullPointerException();
            new ForEachTransformedMappingTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            transformer, action).invoke();
        }
    
        /**
         * Returns a non-null result from applying the given search
         * function on each (key, value), or null if none.  Upon
         * success, further element processing is suppressed and the
         * results of any other parallel invocations of the search
         * function are ignored.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param searchFunction       a function returning a non-null
         *                             result on success, else null
         * @param <U>                  the return type of the search function
         * @return a non-null result from applying the given search
         * function on each (key, value), or null if none
         * @since 1.8
         */
        public <U> U search(long parallelismThreshold,
                            BiFunction<? super K, ? super V, ? extends U> searchFunction) {
            if (searchFunction == null) throw new NullPointerException();
            return new SearchMappingsTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            searchFunction, new AtomicReference<U>()).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all (key, value) pairs using the given reducer to
         * combine values, or null if none.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element, or null if there is no transformation (in
         *                             which case it is not combined)
         * @param reducer              a commutative associative combining function
         * @param <U>                  the return type of the transformer
         * @return the result of accumulating the given transformation
         * of all (key, value) pairs
         * @since 1.8
         */
        public <U> U reduce(long parallelismThreshold,
                            BiFunction<? super K, ? super V, ? extends U> transformer,
                            BiFunction<? super U, ? super U, ? extends U> reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceMappingsTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all (key, value) pairs using the given reducer to
         * combine values, and the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all (key, value) pairs
         * @since 1.8
         */
        public double reduceToDouble(long parallelismThreshold,
                                     ToDoubleBiFunction<? super K, ? super V> transformer,
                                     double basis,
                                     DoubleBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceMappingsToDoubleTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all (key, value) pairs using the given reducer to
         * combine values, and the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all (key, value) pairs
         * @since 1.8
         */
        public long reduceToLong(long parallelismThreshold,
                                 ToLongBiFunction<? super K, ? super V> transformer,
                                 long basis,
                                 LongBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceMappingsToLongTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all (key, value) pairs using the given reducer to
         * combine values, and the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all (key, value) pairs
         * @since 1.8
         */
        public int reduceToInt(long parallelismThreshold,
                               ToIntBiFunction<? super K, ? super V> transformer,
                               int basis,
                               IntBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceMappingsToIntTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Performs the given action for each key.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param action               the action
         * @since 1.8
         */
        public void forEachKey(long parallelismThreshold,
                               Consumer<? super K> action) {
            if (action == null) throw new NullPointerException();
            new ForEachKeyTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            action).invoke();
        }
    
        /**
         * Performs the given action for each non-null transformation
         * of each key.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element, or null if there is no transformation (in
         *                             which case the action is not applied)
         * @param action               the action
         * @param <U>                  the return type of the transformer
         * @since 1.8
         */
        public <U> void forEachKey(long parallelismThreshold,
                                   Function<? super K, ? extends U> transformer,
                                   Consumer<? super U> action) {
            if (transformer == null || action == null)
                throw new NullPointerException();
            new ForEachTransformedKeyTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            transformer, action).invoke();
        }
    
        /**
         * Returns a non-null result from applying the given search
         * function on each key, or null if none. Upon success,
         * further element processing is suppressed and the results of
         * any other parallel invocations of the search function are
         * ignored.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param searchFunction       a function returning a non-null
         *                             result on success, else null
         * @param <U>                  the return type of the search function
         * @return a non-null result from applying the given search
         * function on each key, or null if none
         * @since 1.8
         */
        public <U> U searchKeys(long parallelismThreshold,
                                Function<? super K, ? extends U> searchFunction) {
            if (searchFunction == null) throw new NullPointerException();
            return new SearchKeysTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            searchFunction, new AtomicReference<U>()).invoke();
        }
    
        /**
         * Returns the result of accumulating all keys using the given
         * reducer to combine values, or null if none.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating all keys using the given
         * reducer to combine values, or null if none
         * @since 1.8
         */
        public K reduceKeys(long parallelismThreshold,
                            BiFunction<? super K, ? super K, ? extends K> reducer) {
            if (reducer == null) throw new NullPointerException();
            return new ReduceKeysTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all keys using the given reducer to combine values, or
         * null if none.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element, or null if there is no transformation (in
         *                             which case it is not combined)
         * @param reducer              a commutative associative combining function
         * @param <U>                  the return type of the transformer
         * @return the result of accumulating the given transformation
         * of all keys
         * @since 1.8
         */
        public <U> U reduceKeys(long parallelismThreshold,
                                Function<? super K, ? extends U> transformer,
                                BiFunction<? super U, ? super U, ? extends U> reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceKeysTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all keys using the given reducer to combine values, and
         * the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all keys
         * @since 1.8
         */
        public double reduceKeysToDouble(long parallelismThreshold,
                                         ToDoubleFunction<? super K> transformer,
                                         double basis,
                                         DoubleBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceKeysToDoubleTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all keys using the given reducer to combine values, and
         * the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all keys
         * @since 1.8
         */
        public long reduceKeysToLong(long parallelismThreshold,
                                     ToLongFunction<? super K> transformer,
                                     long basis,
                                     LongBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceKeysToLongTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all keys using the given reducer to combine values, and
         * the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all keys
         * @since 1.8
         */
        public int reduceKeysToInt(long parallelismThreshold,
                                   ToIntFunction<? super K> transformer,
                                   int basis,
                                   IntBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceKeysToIntTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Performs the given action for each value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param action               the action
         * @since 1.8
         */
        public void forEachValue(long parallelismThreshold,
                                 Consumer<? super V> action) {
            if (action == null)
                throw new NullPointerException();
            new ForEachValueTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            action).invoke();
        }
    
        /**
         * Performs the given action for each non-null transformation
         * of each value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element, or null if there is no transformation (in
         *                             which case the action is not applied)
         * @param action               the action
         * @param <U>                  the return type of the transformer
         * @since 1.8
         */
        public <U> void forEachValue(long parallelismThreshold,
                                     Function<? super V, ? extends U> transformer,
                                     Consumer<? super U> action) {
            if (transformer == null || action == null)
                throw new NullPointerException();
            new ForEachTransformedValueTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            transformer, action).invoke();
        }
    
        /**
         * Returns a non-null result from applying the given search
         * function on each value, or null if none.  Upon success,
         * further element processing is suppressed and the results of
         * any other parallel invocations of the search function are
         * ignored.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param searchFunction       a function returning a non-null
         *                             result on success, else null
         * @param <U>                  the return type of the search function
         * @return a non-null result from applying the given search
         * function on each value, or null if none
         * @since 1.8
         */
        public <U> U searchValues(long parallelismThreshold,
                                  Function<? super V, ? extends U> searchFunction) {
            if (searchFunction == null) throw new NullPointerException();
            return new SearchValuesTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            searchFunction, new AtomicReference<U>()).invoke();
        }
    
        /**
         * Returns the result of accumulating all values using the
         * given reducer to combine values, or null if none.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating all values
         * @since 1.8
         */
        public V reduceValues(long parallelismThreshold,
                              BiFunction<? super V, ? super V, ? extends V> reducer) {
            if (reducer == null) throw new NullPointerException();
            return new ReduceValuesTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all values using the given reducer to combine values, or
         * null if none.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element, or null if there is no transformation (in
         *                             which case it is not combined)
         * @param reducer              a commutative associative combining function
         * @param <U>                  the return type of the transformer
         * @return the result of accumulating the given transformation
         * of all values
         * @since 1.8
         */
        public <U> U reduceValues(long parallelismThreshold,
                                  Function<? super V, ? extends U> transformer,
                                  BiFunction<? super U, ? super U, ? extends U> reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceValuesTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all values using the given reducer to combine values,
         * and the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all values
         * @since 1.8
         */
        public double reduceValuesToDouble(long parallelismThreshold,
                                           ToDoubleFunction<? super V> transformer,
                                           double basis,
                                           DoubleBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceValuesToDoubleTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all values using the given reducer to combine values,
         * and the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all values
         * @since 1.8
         */
        public long reduceValuesToLong(long parallelismThreshold,
                                       ToLongFunction<? super V> transformer,
                                       long basis,
                                       LongBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceValuesToLongTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all values using the given reducer to combine values,
         * and the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all values
         * @since 1.8
         */
        public int reduceValuesToInt(long parallelismThreshold,
                                     ToIntFunction<? super V> transformer,
                                     int basis,
                                     IntBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceValuesToIntTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Performs the given action for each entry.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param action               the action
         * @since 1.8
         */
        public void forEachEntry(long parallelismThreshold,
                                 Consumer<? super Map.Entry<K, V>> action) {
            if (action == null) throw new NullPointerException();
            new ForEachEntryTask<K, V>(null, batchFor(parallelismThreshold), 0, 0, table,
                    action).invoke();
        }
    
        /**
         * Performs the given action for each non-null transformation
         * of each entry.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element, or null if there is no transformation (in
         *                             which case the action is not applied)
         * @param action               the action
         * @param <U>                  the return type of the transformer
         * @since 1.8
         */
        public <U> void forEachEntry(long parallelismThreshold,
                                     Function<Map.Entry<K, V>, ? extends U> transformer,
                                     Consumer<? super U> action) {
            if (transformer == null || action == null)
                throw new NullPointerException();
            new ForEachTransformedEntryTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            transformer, action).invoke();
        }
    
        /**
         * Returns a non-null result from applying the given search
         * function on each entry, or null if none.  Upon success,
         * further element processing is suppressed and the results of
         * any other parallel invocations of the search function are
         * ignored.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param searchFunction       a function returning a non-null
         *                             result on success, else null
         * @param <U>                  the return type of the search function
         * @return a non-null result from applying the given search
         * function on each entry, or null if none
         * @since 1.8
         */
        public <U> U searchEntries(long parallelismThreshold,
                                   Function<Map.Entry<K, V>, ? extends U> searchFunction) {
            if (searchFunction == null) throw new NullPointerException();
            return new SearchEntriesTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            searchFunction, new AtomicReference<U>()).invoke();
        }
    
        /**
         * Returns the result of accumulating all entries using the
         * given reducer to combine values, or null if none.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating all entries
         * @since 1.8
         */
        public Map.Entry<K, V> reduceEntries(long parallelismThreshold,
                                             BiFunction<Map.Entry<K, V>, Map.Entry<K, V>, ? extends Map.Entry<K, V>> reducer) {
            if (reducer == null) throw new NullPointerException();
            return new ReduceEntriesTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all entries using the given reducer to combine values,
         * or null if none.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element, or null if there is no transformation (in
         *                             which case it is not combined)
         * @param reducer              a commutative associative combining function
         * @param <U>                  the return type of the transformer
         * @return the result of accumulating the given transformation
         * of all entries
         * @since 1.8
         */
        public <U> U reduceEntries(long parallelismThreshold,
                                   Function<Map.Entry<K, V>, ? extends U> transformer,
                                   BiFunction<? super U, ? super U, ? extends U> reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceEntriesTask<K, V, U>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all entries using the given reducer to combine values,
         * and the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all entries
         * @since 1.8
         */
        public double reduceEntriesToDouble(long parallelismThreshold,
                                            ToDoubleFunction<Map.Entry<K, V>> transformer,
                                            double basis,
                                            DoubleBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceEntriesToDoubleTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all entries using the given reducer to combine values,
         * and the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all entries
         * @since 1.8
         */
        public long reduceEntriesToLong(long parallelismThreshold,
                                        ToLongFunction<Map.Entry<K, V>> transformer,
                                        long basis,
                                        LongBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceEntriesToLongTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
        /**
         * Returns the result of accumulating the given transformation
         * of all entries using the given reducer to combine values,
         * and the given basis as an identity value.
         *
         * @param parallelismThreshold the (estimated) number of elements
         *                             needed for this operation to be executed in parallel
         * @param transformer          a function returning the transformation
         *                             for an element
         * @param basis                the identity (initial default value) for the reduction
         * @param reducer              a commutative associative combining function
         * @return the result of accumulating the given transformation
         * of all entries
         * @since 1.8
         */
        public int reduceEntriesToInt(long parallelismThreshold,
                                      ToIntFunction<Map.Entry<K, V>> transformer,
                                      int basis,
                                      IntBinaryOperator reducer) {
            if (transformer == null || reducer == null)
                throw new NullPointerException();
            return new MapReduceEntriesToIntTask<K, V>
                    (null, batchFor(parallelismThreshold), 0, 0, table,
                            null, transformer, basis, reducer).invoke();
        }
    
    
        /* ----------------Views -------------- */
    
        /**
         * Base class for views.
         */
        abstract static class CollectionView<K, V, E>
                implements Collection<E>, java.io.Serializable {
            private static final long serialVersionUID = 7249069246763182397L;
            final ConcurrentHashMap<K, V> map;
    
            CollectionView(ConcurrentHashMap<K, V> map) {
                this.map = map;
            }
    
            /**
             * Returns the map backing this view.
             *
             * @return the map backing this view
             */
            public ConcurrentHashMap<K, V> getMap() {
                return map;
            }
    
            /**
             * Removes all of the elements from this view, by removing all
             * the mappings from the map backing this view.
             */
            public final void clear() {
                map.clear();
            }
    
            public final int size() {
                return map.size();
            }
    
            public final boolean isEmpty() {
                return map.isEmpty();
            }
    
            // implementations below rely on concrete classes supplying these
            // abstract methods
    
            /**
             * Returns an iterator over the elements in this collection.
             * <p>
             * <p>The returned iterator is
             * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
             *
             * @return an iterator over the elements in this collection
             */
            public abstract Iterator<E> iterator();
    
            public abstract boolean contains(Object o);
    
            public abstract boolean remove(Object o);
    
            private static final String oomeMsg = "Required array size too large";
    
            public final Object[] toArray() {
                long sz = map.mappingCount();
                if (sz > MAX_ARRAY_SIZE)
                    throw new OutOfMemoryError(oomeMsg);
                int n = (int) sz;
                Object[] r = new Object[n];
                int i = 0;
                for (E e : this) {
                    if (i == n) {
                        if (n >= MAX_ARRAY_SIZE)
                            throw new OutOfMemoryError(oomeMsg);
                        if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
                            n = MAX_ARRAY_SIZE;
                        else
                            n += (n >>> 1) + 1;
                        r = Arrays.copyOf(r, n);
                    }
                    r[i++] = e;
                }
                return (i == n) ? r : Arrays.copyOf(r, i);
            }
    
            @SuppressWarnings("unchecked")
            public final <T> T[] toArray(T[] a) {
                long sz = map.mappingCount();
                if (sz > MAX_ARRAY_SIZE)
                    throw new OutOfMemoryError(oomeMsg);
                int m = (int) sz;
                T[] r = (a.length >= m) ? a :
                        (T[]) java.lang.reflect.Array
                                .newInstance(a.getClass().getComponentType(), m);
                int n = r.length;
                int i = 0;
                for (E e : this) {
                    if (i == n) {
                        if (n >= MAX_ARRAY_SIZE)
                            throw new OutOfMemoryError(oomeMsg);
                        if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
                            n = MAX_ARRAY_SIZE;
                        else
                            n += (n >>> 1) + 1;
                        r = Arrays.copyOf(r, n);
                    }
                    r[i++] = (T) e;
                }
                if (a == r && i < n) {
                    r[i] = null; // null-terminate
                    return r;
                }
                return (i == n) ? r : Arrays.copyOf(r, i);
            }
    
            /**
             * Returns a string representation of this collection.
             * The string representation consists of the string representations
             * of the collection's elements in the order they are returned by
             * its iterator, enclosed in square brackets ({@code "[]"}).
             * Adjacent elements are separated by the characters {@code ", "}
             * (comma and space).  Elements are converted to strings as by
             * {@link String#valueOf(Object)}.
             *
             * @return a string representation of this collection
             */
            public final String toString() {
                StringBuilder sb = new StringBuilder();
                sb.append('[');
                Iterator<E> it = iterator();
                if (it.hasNext()) {
                    for (; ; ) {
                        Object e = it.next();
                        sb.append(e == this ? "(this Collection)" : e);
                        if (!it.hasNext())
                            break;
                        sb.append(',').append(' ');
                    }
                }
                return sb.append(']').toString();
            }
    
            public final boolean containsAll(Collection<?> c) {
                if (c != this) {
                    for (Object e : c) {
                        if (e == null || !contains(e))
                            return false;
                    }
                }
                return true;
            }
    
            public final boolean removeAll(Collection<?> c) {
                if (c == null) throw new NullPointerException();
                boolean modified = false;
                for (Iterator<E> it = iterator(); it.hasNext(); ) {
                    if (c.contains(it.next())) {
                        it.remove();
                        modified = true;
                    }
                }
                return modified;
            }
    
            public final boolean retainAll(Collection<?> c) {
                if (c == null) throw new NullPointerException();
                boolean modified = false;
                for (Iterator<E> it = iterator(); it.hasNext(); ) {
                    if (!c.contains(it.next())) {
                        it.remove();
                        modified = true;
                    }
                }
                return modified;
            }
    
        }
    
        /**
         * A view of a ConcurrentHashMap as a {@link Set} of keys, in
         * which additions may optionally be enabled by mapping to a
         * common value.  This class cannot be directly instantiated.
         * See {@link #keySet() keySet()},
         * {@link #keySet(Object) keySet(V)},
         * {@link #newKeySet() newKeySet()},
         * {@link #newKeySet(int) newKeySet(int)}.
         *
         * @since 1.8
         */
        public static class KeySetView<K, V> extends CollectionView<K, V, K>
                implements Set<K>, java.io.Serializable {
            private static final long serialVersionUID = 7249069246763182397L;
            private final V value;
    
            KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
                super(map);
                this.value = value;
            }
    
            /**
             * Returns the default mapped value for additions,
             * or {@code null} if additions are not supported.
             *
             * @return the default mapped value for additions, or {@code null}
             * if not supported
             */
            public V getMappedValue() {
                return value;
            }
    
            /**
             * {@inheritDoc}
             *
             * @throws NullPointerException if the specified key is null
             */
            public boolean contains(Object o) {
                return map.containsKey(o);
            }
    
            /**
             * Removes the key from this map view, by removing the key (and its
             * corresponding value) from the backing map.  This method does
             * nothing if the key is not in the map.
             *
             * @param o the key to be removed from the backing map
             * @return {@code true} if the backing map contained the specified key
             * @throws NullPointerException if the specified key is null
             */
            public boolean remove(Object o) {
                return map.remove(o) != null;
            }
    
            /**
             * @return an iterator over the keys of the backing map
             */
            public Iterator<K> iterator() {
                Node<K, V>[] t;
                ConcurrentHashMap<K, V> m = map;
                int f = (t = m.table) == null ? 0 : t.length;
                return new KeyIterator<K, V>(t, f, 0, f, m);
            }
    
            /**
             * Adds the specified key to this set view by mapping the key to
             * the default mapped value in the backing map, if defined.
             *
             * @param e key to be added
             * @return {@code true} if this set changed as a result of the call
             * @throws NullPointerException          if the specified key is null
             * @throws UnsupportedOperationException if no default mapped value
             *                                       for additions was provided
             */
            public boolean add(K e) {
                V v;
                if ((v = value) == null)
                    throw new UnsupportedOperationException();
                return map.putVal(e, v, true) == null;
            }
    
            /**
             * Adds all of the elements in the specified collection to this set,
             * as if by calling {@link #add} on each one.
             *
             * @param c the elements to be inserted into this set
             * @return {@code true} if this set changed as a result of the call
             * @throws NullPointerException          if the collection or any of its
             *                                       elements are {@code null}
             * @throws UnsupportedOperationException if no default mapped value
             *                                       for additions was provided
             */
            public boolean addAll(Collection<? extends K> c) {
                boolean added = false;
                V v;
                if ((v = value) == null)
                    throw new UnsupportedOperationException();
                for (K e : c) {
                    if (map.putVal(e, v, true) == null)
                        added = true;
                }
                return added;
            }
    
            public int hashCode() {
                int h = 0;
                for (K e : this)
                    h += e.hashCode();
                return h;
            }
    
            public boolean equals(Object o) {
                Set<?> c;
                return ((o instanceof Set) &&
                        ((c = (Set<?>) o) == this ||
                                (containsAll(c) && c.containsAll(this))));
            }
    
            public Spliterator<K> spliterator() {
                Node<K, V>[] t;
                ConcurrentHashMap<K, V> m = map;
                long n = m.sumCount();
                int f = (t = m.table) == null ? 0 : t.length;
                return new KeySpliterator<K, V>(t, f, 0, f, n < 0L ? 0L : n);
            }
    
            public void forEach(Consumer<? super K> action) {
                if (action == null) throw new NullPointerException();
                Node<K, V>[] t;
                if ((t = map.table) != null) {
                    Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                    for (Node<K, V> p; (p = it.advance()) != null; )
                        action.accept(p.key);
                }
            }
        }
    
        /**
         * A view of a ConcurrentHashMap as a {@link Collection} of
         * values, in which additions are disabled. This class cannot be
         * directly instantiated. See {@link #values()}.
         */
        static final class ValuesView<K, V> extends CollectionView<K, V, V>
                implements Collection<V>, java.io.Serializable {
            private static final long serialVersionUID = 2249069246763182397L;
    
            ValuesView(ConcurrentHashMap<K, V> map) {
                super(map);
            }
    
            public final boolean contains(Object o) {
                return map.containsValue(o);
            }
    
            public final boolean remove(Object o) {
                if (o != null) {
                    for (Iterator<V> it = iterator(); it.hasNext(); ) {
                        if (o.equals(it.next())) {
                            it.remove();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public final Iterator<V> iterator() {
                ConcurrentHashMap<K, V> m = map;
                Node<K, V>[] t;
                int f = (t = m.table) == null ? 0 : t.length;
                return new ValueIterator<K, V>(t, f, 0, f, m);
            }
    
            public final boolean add(V e) {
                throw new UnsupportedOperationException();
            }
    
            public final boolean addAll(Collection<? extends V> c) {
                throw new UnsupportedOperationException();
            }
    
            public Spliterator<V> spliterator() {
                Node<K, V>[] t;
                ConcurrentHashMap<K, V> m = map;
                long n = m.sumCount();
                int f = (t = m.table) == null ? 0 : t.length;
                return new ValueSpliterator<K, V>(t, f, 0, f, n < 0L ? 0L : n);
            }
    
            public void forEach(Consumer<? super V> action) {
                if (action == null) throw new NullPointerException();
                Node<K, V>[] t;
                if ((t = map.table) != null) {
                    Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                    for (Node<K, V> p; (p = it.advance()) != null; )
                        action.accept(p.val);
                }
            }
        }
    
        /**
         * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
         * entries.  This class cannot be directly instantiated. See
         * {@link #entrySet()}.
         */
        static final class EntrySetView<K, V> extends CollectionView<K, V, Map.Entry<K, V>>
                implements Set<Map.Entry<K, V>>, java.io.Serializable {
            private static final long serialVersionUID = 2249069246763182397L;
    
            EntrySetView(ConcurrentHashMap<K, V> map) {
                super(map);
            }
    
            public boolean contains(Object o) {
                Object k, v, r;
                Map.Entry<?, ?> e;
                return ((o instanceof Map.Entry) &&
                        (k = (e = (Map.Entry<?, ?>) o).getKey()) != null &&
                        (r = map.get(k)) != null &&
                        (v = e.getValue()) != null &&
                        (v == r || v.equals(r)));
            }
    
            public boolean remove(Object o) {
                Object k, v;
                Map.Entry<?, ?> e;
                return ((o instanceof Map.Entry) &&
                        (k = (e = (Map.Entry<?, ?>) o).getKey()) != null &&
                        (v = e.getValue()) != null &&
                        map.remove(k, v));
            }
    
            /**
             * @return an iterator over the entries of the backing map
             */
            public Iterator<Map.Entry<K, V>> iterator() {
                ConcurrentHashMap<K, V> m = map;
                Node<K, V>[] t;
                int f = (t = m.table) == null ? 0 : t.length;
                return new EntryIterator<K, V>(t, f, 0, f, m);
            }
    
            public boolean add(Entry<K, V> e) {
                return map.putVal(e.getKey(), e.getValue(), false) == null;
            }
    
            public boolean addAll(Collection<? extends Entry<K, V>> c) {
                boolean added = false;
                for (Entry<K, V> e : c) {
                    if (add(e))
                        added = true;
                }
                return added;
            }
    
            public final int hashCode() {
                int h = 0;
                Node<K, V>[] t;
                if ((t = map.table) != null) {
                    Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                    for (Node<K, V> p; (p = it.advance()) != null; ) {
                        h += p.hashCode();
                    }
                }
                return h;
            }
    
            public final boolean equals(Object o) {
                Set<?> c;
                return ((o instanceof Set) &&
                        ((c = (Set<?>) o) == this ||
                                (containsAll(c) && c.containsAll(this))));
            }
    
            public Spliterator<Map.Entry<K, V>> spliterator() {
                Node<K, V>[] t;
                ConcurrentHashMap<K, V> m = map;
                long n = m.sumCount();
                int f = (t = m.table) == null ? 0 : t.length;
                return new EntrySpliterator<K, V>(t, f, 0, f, n < 0L ? 0L : n, m);
            }
    
            public void forEach(Consumer<? super Map.Entry<K, V>> action) {
                if (action == null) throw new NullPointerException();
                Node<K, V>[] t;
                if ((t = map.table) != null) {
                    Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                    for (Node<K, V> p; (p = it.advance()) != null; )
                        action.accept(new MapEntry<K, V>(p.key, p.val, map));
                }
            }
    
        }
    
        // -------------------------------------------------------
    
        /**
         * Base class for bulk tasks. Repeats some fields and code from
         * class Traverser, because we need to subclass CountedCompleter.
         */
        @SuppressWarnings("serial")
        abstract static class BulkTask<K, V, R> extends CountedCompleter<R> {
            Node<K, V>[] tab;        // same as Traverser
            Node<K, V> next;
            TableStack<K, V> stack, spare;
            int index;
            int baseIndex;
            int baseLimit;
            final int baseSize;
            int batch;              // split control
    
            BulkTask(BulkTask<K, V, ?> par, int b, int i, int f, Node<K, V>[] t) {
                super(par);
                this.batch = b;
                this.index = this.baseIndex = i;
                if ((this.tab = t) == null)
                    this.baseSize = this.baseLimit = 0;
                else if (par == null)
                    this.baseSize = this.baseLimit = t.length;
                else {
                    this.baseLimit = f;
                    this.baseSize = par.baseSize;
                }
            }
    
            /**
             * Same as Traverser version
             */
            final Node<K, V> advance() {
                Node<K, V> e;
                if ((e = next) != null)
                    e = e.next;
                for (; ; ) {
                    Node<K, V>[] t;
                    int i, n;
                    if (e != null)
                        return next = e;
                    if (baseIndex >= baseLimit || (t = tab) == null ||
                            (n = t.length) <= (i = index) || i < 0)
                        return next = null;
                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
                        if (e instanceof ForwardingNode) {
                            tab = ((ForwardingNode<K, V>) e).nextTable;
                            e = null;
                            pushState(t, i, n);
                            continue;
                        } else if (e instanceof TreeBin)
                            e = ((TreeBin<K, V>) e).first;
                        else
                            e = null;
                    }
                    if (stack != null)
                        recoverState(n);
                    else if ((index = i + baseSize) >= n)
                        index = ++baseIndex;
                }
            }
    
            private void pushState(Node<K, V>[] t, int i, int n) {
                TableStack<K, V> s = spare;
                if (s != null)
                    spare = s.next;
                else
                    s = new TableStack<K, V>();
                s.tab = t;
                s.length = n;
                s.index = i;
                s.next = stack;
                stack = s;
            }
    
            private void recoverState(int n) {
                TableStack<K, V> s;
                int len;
                while ((s = stack) != null && (index += (len = s.length)) >= n) {
                    n = len;
                    index = s.index;
                    tab = s.tab;
                    s.tab = null;
                    TableStack<K, V> next = s.next;
                    s.next = spare; // save for reuse
                    stack = next;
                    spare = s;
                }
                if (s == null && (index += baseSize) >= n)
                    index = ++baseIndex;
            }
        }
    
        /*
         * Task classes. Coded in a regular but ugly format/style to
         * simplify checks that each variant differs in the right way from
         * others. The null screenings exist because compilers cannot tell
         * that we've already null-checked task arguments, so we force
         * simplest hoisted bypass to help avoid convoluted traps.
         */
        @SuppressWarnings("serial")
        static final class ForEachKeyTask<K, V>
                extends BulkTask<K, V, Void> {
            final Consumer<? super K> action;
    
            ForEachKeyTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     Consumer<? super K> action) {
                super(p, b, i, f, t);
                this.action = action;
            }
    
            public final void compute() {
                final Consumer<? super K> action;
                if ((action = this.action) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        new ForEachKeyTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        action).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        action.accept(p.key);
                    propagateCompletion();
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class ForEachValueTask<K, V>
                extends BulkTask<K, V, Void> {
            final Consumer<? super V> action;
    
            ForEachValueTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     Consumer<? super V> action) {
                super(p, b, i, f, t);
                this.action = action;
            }
    
            public final void compute() {
                final Consumer<? super V> action;
                if ((action = this.action) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        new ForEachValueTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        action).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        action.accept(p.val);
                    propagateCompletion();
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class ForEachEntryTask<K, V>
                extends BulkTask<K, V, Void> {
            final Consumer<? super Entry<K, V>> action;
    
            ForEachEntryTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     Consumer<? super Entry<K, V>> action) {
                super(p, b, i, f, t);
                this.action = action;
            }
    
            public final void compute() {
                final Consumer<? super Entry<K, V>> action;
                if ((action = this.action) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        new ForEachEntryTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        action).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        action.accept(p);
                    propagateCompletion();
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class ForEachMappingTask<K, V>
                extends BulkTask<K, V, Void> {
            final BiConsumer<? super K, ? super V> action;
    
            ForEachMappingTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     BiConsumer<? super K, ? super V> action) {
                super(p, b, i, f, t);
                this.action = action;
            }
    
            public final void compute() {
                final BiConsumer<? super K, ? super V> action;
                if ((action = this.action) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        new ForEachMappingTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        action).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        action.accept(p.key, p.val);
                    propagateCompletion();
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class ForEachTransformedKeyTask<K, V, U>
                extends BulkTask<K, V, Void> {
            final Function<? super K, ? extends U> transformer;
            final Consumer<? super U> action;
    
            ForEachTransformedKeyTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
                super(p, b, i, f, t);
                this.transformer = transformer;
                this.action = action;
            }
    
            public final void compute() {
                final Function<? super K, ? extends U> transformer;
                final Consumer<? super U> action;
                if ((transformer = this.transformer) != null &&
                        (action = this.action) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        new ForEachTransformedKeyTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        transformer, action).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; ) {
                        U u;
                        if ((u = transformer.apply(p.key)) != null)
                            action.accept(u);
                    }
                    propagateCompletion();
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class ForEachTransformedValueTask<K, V, U>
                extends BulkTask<K, V, Void> {
            final Function<? super V, ? extends U> transformer;
            final Consumer<? super U> action;
    
            ForEachTransformedValueTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
                super(p, b, i, f, t);
                this.transformer = transformer;
                this.action = action;
            }
    
            public final void compute() {
                final Function<? super V, ? extends U> transformer;
                final Consumer<? super U> action;
                if ((transformer = this.transformer) != null &&
                        (action = this.action) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        new ForEachTransformedValueTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        transformer, action).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; ) {
                        U u;
                        if ((u = transformer.apply(p.val)) != null)
                            action.accept(u);
                    }
                    propagateCompletion();
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class ForEachTransformedEntryTask<K, V, U>
                extends BulkTask<K, V, Void> {
            final Function<Map.Entry<K, V>, ? extends U> transformer;
            final Consumer<? super U> action;
    
            ForEachTransformedEntryTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     Function<Map.Entry<K, V>, ? extends U> transformer, Consumer<? super U> action) {
                super(p, b, i, f, t);
                this.transformer = transformer;
                this.action = action;
            }
    
            public final void compute() {
                final Function<Map.Entry<K, V>, ? extends U> transformer;
                final Consumer<? super U> action;
                if ((transformer = this.transformer) != null &&
                        (action = this.action) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        new ForEachTransformedEntryTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        transformer, action).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; ) {
                        U u;
                        if ((u = transformer.apply(p)) != null)
                            action.accept(u);
                    }
                    propagateCompletion();
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class ForEachTransformedMappingTask<K, V, U>
                extends BulkTask<K, V, Void> {
            final BiFunction<? super K, ? super V, ? extends U> transformer;
            final Consumer<? super U> action;
    
            ForEachTransformedMappingTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     BiFunction<? super K, ? super V, ? extends U> transformer,
                     Consumer<? super U> action) {
                super(p, b, i, f, t);
                this.transformer = transformer;
                this.action = action;
            }
    
            public final void compute() {
                final BiFunction<? super K, ? super V, ? extends U> transformer;
                final Consumer<? super U> action;
                if ((transformer = this.transformer) != null &&
                        (action = this.action) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        new ForEachTransformedMappingTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        transformer, action).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; ) {
                        U u;
                        if ((u = transformer.apply(p.key, p.val)) != null)
                            action.accept(u);
                    }
                    propagateCompletion();
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class SearchKeysTask<K, V, U>
                extends BulkTask<K, V, U> {
            final Function<? super K, ? extends U> searchFunction;
            final AtomicReference<U> result;
    
            SearchKeysTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     Function<? super K, ? extends U> searchFunction,
                     AtomicReference<U> result) {
                super(p, b, i, f, t);
                this.searchFunction = searchFunction;
                this.result = result;
            }
    
            public final U getRawResult() {
                return result.get();
            }
    
            public final void compute() {
                final Function<? super K, ? extends U> searchFunction;
                final AtomicReference<U> result;
                if ((searchFunction = this.searchFunction) != null &&
                        (result = this.result) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        if (result.get() != null)
                            return;
                        addToPendingCount(1);
                        new SearchKeysTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        searchFunction, result).fork();
                    }
                    while (result.get() == null) {
                        U u;
                        Node<K, V> p;
                        if ((p = advance()) == null) {
                            propagateCompletion();
                            break;
                        }
                        if ((u = searchFunction.apply(p.key)) != null) {
                            if (result.compareAndSet(null, u))
                                quietlyCompleteRoot();
                            break;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class SearchValuesTask<K, V, U>
                extends BulkTask<K, V, U> {
            final Function<? super V, ? extends U> searchFunction;
            final AtomicReference<U> result;
    
            SearchValuesTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     Function<? super V, ? extends U> searchFunction,
                     AtomicReference<U> result) {
                super(p, b, i, f, t);
                this.searchFunction = searchFunction;
                this.result = result;
            }
    
            public final U getRawResult() {
                return result.get();
            }
    
            public final void compute() {
                final Function<? super V, ? extends U> searchFunction;
                final AtomicReference<U> result;
                if ((searchFunction = this.searchFunction) != null &&
                        (result = this.result) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        if (result.get() != null)
                            return;
                        addToPendingCount(1);
                        new SearchValuesTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        searchFunction, result).fork();
                    }
                    while (result.get() == null) {
                        U u;
                        Node<K, V> p;
                        if ((p = advance()) == null) {
                            propagateCompletion();
                            break;
                        }
                        if ((u = searchFunction.apply(p.val)) != null) {
                            if (result.compareAndSet(null, u))
                                quietlyCompleteRoot();
                            break;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class SearchEntriesTask<K, V, U>
                extends BulkTask<K, V, U> {
            final Function<Entry<K, V>, ? extends U> searchFunction;
            final AtomicReference<U> result;
    
            SearchEntriesTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     Function<Entry<K, V>, ? extends U> searchFunction,
                     AtomicReference<U> result) {
                super(p, b, i, f, t);
                this.searchFunction = searchFunction;
                this.result = result;
            }
    
            public final U getRawResult() {
                return result.get();
            }
    
            public final void compute() {
                final Function<Entry<K, V>, ? extends U> searchFunction;
                final AtomicReference<U> result;
                if ((searchFunction = this.searchFunction) != null &&
                        (result = this.result) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        if (result.get() != null)
                            return;
                        addToPendingCount(1);
                        new SearchEntriesTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        searchFunction, result).fork();
                    }
                    while (result.get() == null) {
                        U u;
                        Node<K, V> p;
                        if ((p = advance()) == null) {
                            propagateCompletion();
                            break;
                        }
                        if ((u = searchFunction.apply(p)) != null) {
                            if (result.compareAndSet(null, u))
                                quietlyCompleteRoot();
                            return;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class SearchMappingsTask<K, V, U>
                extends BulkTask<K, V, U> {
            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
            final AtomicReference<U> result;
    
            SearchMappingsTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     BiFunction<? super K, ? super V, ? extends U> searchFunction,
                     AtomicReference<U> result) {
                super(p, b, i, f, t);
                this.searchFunction = searchFunction;
                this.result = result;
            }
    
            public final U getRawResult() {
                return result.get();
            }
    
            public final void compute() {
                final BiFunction<? super K, ? super V, ? extends U> searchFunction;
                final AtomicReference<U> result;
                if ((searchFunction = this.searchFunction) != null &&
                        (result = this.result) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        if (result.get() != null)
                            return;
                        addToPendingCount(1);
                        new SearchMappingsTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        searchFunction, result).fork();
                    }
                    while (result.get() == null) {
                        U u;
                        Node<K, V> p;
                        if ((p = advance()) == null) {
                            propagateCompletion();
                            break;
                        }
                        if ((u = searchFunction.apply(p.key, p.val)) != null) {
                            if (result.compareAndSet(null, u))
                                quietlyCompleteRoot();
                            break;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class ReduceKeysTask<K, V>
                extends BulkTask<K, V, K> {
            final BiFunction<? super K, ? super K, ? extends K> reducer;
            K result;
            ReduceKeysTask<K, V> rights, nextRight;
    
            ReduceKeysTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     ReduceKeysTask<K, V> nextRight,
                     BiFunction<? super K, ? super K, ? extends K> reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.reducer = reducer;
            }
    
            public final K getRawResult() {
                return result;
            }
    
            public final void compute() {
                final BiFunction<? super K, ? super K, ? extends K> reducer;
                if ((reducer = this.reducer) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new ReduceKeysTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, reducer)).fork();
                    }
                    K r = null;
                    for (Node<K, V> p; (p = advance()) != null; ) {
                        K u = p.key;
                        r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
                    }
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        ReduceKeysTask<K, V>
                                t = (ReduceKeysTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            K tr, sr;
                            if ((sr = s.result) != null)
                                t.result = (((tr = t.result) == null) ? sr :
                                        reducer.apply(tr, sr));
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class ReduceValuesTask<K, V>
                extends BulkTask<K, V, V> {
            final BiFunction<? super V, ? super V, ? extends V> reducer;
            V result;
            ReduceValuesTask<K, V> rights, nextRight;
    
            ReduceValuesTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     ReduceValuesTask<K, V> nextRight,
                     BiFunction<? super V, ? super V, ? extends V> reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.reducer = reducer;
            }
    
            public final V getRawResult() {
                return result;
            }
    
            public final void compute() {
                final BiFunction<? super V, ? super V, ? extends V> reducer;
                if ((reducer = this.reducer) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new ReduceValuesTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, reducer)).fork();
                    }
                    V r = null;
                    for (Node<K, V> p; (p = advance()) != null; ) {
                        V v = p.val;
                        r = (r == null) ? v : reducer.apply(r, v);
                    }
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        ReduceValuesTask<K, V>
                                t = (ReduceValuesTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            V tr, sr;
                            if ((sr = s.result) != null)
                                t.result = (((tr = t.result) == null) ? sr :
                                        reducer.apply(tr, sr));
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class ReduceEntriesTask<K, V>
                extends BulkTask<K, V, Map.Entry<K, V>> {
            final BiFunction<Map.Entry<K, V>, Map.Entry<K, V>, ? extends Map.Entry<K, V>> reducer;
            Map.Entry<K, V> result;
            ReduceEntriesTask<K, V> rights, nextRight;
    
            ReduceEntriesTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     ReduceEntriesTask<K, V> nextRight,
                     BiFunction<Entry<K, V>, Map.Entry<K, V>, ? extends Map.Entry<K, V>> reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.reducer = reducer;
            }
    
            public final Map.Entry<K, V> getRawResult() {
                return result;
            }
    
            public final void compute() {
                final BiFunction<Map.Entry<K, V>, Map.Entry<K, V>, ? extends Map.Entry<K, V>> reducer;
                if ((reducer = this.reducer) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new ReduceEntriesTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, reducer)).fork();
                    }
                    Map.Entry<K, V> r = null;
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = (r == null) ? p : reducer.apply(r, p);
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        ReduceEntriesTask<K, V>
                                t = (ReduceEntriesTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            Map.Entry<K, V> tr, sr;
                            if ((sr = s.result) != null)
                                t.result = (((tr = t.result) == null) ? sr :
                                        reducer.apply(tr, sr));
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceKeysTask<K, V, U>
                extends BulkTask<K, V, U> {
            final Function<? super K, ? extends U> transformer;
            final BiFunction<? super U, ? super U, ? extends U> reducer;
            U result;
            MapReduceKeysTask<K, V, U> rights, nextRight;
    
            MapReduceKeysTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceKeysTask<K, V, U> nextRight,
                     Function<? super K, ? extends U> transformer,
                     BiFunction<? super U, ? super U, ? extends U> reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.reducer = reducer;
            }
    
            public final U getRawResult() {
                return result;
            }
    
            public final void compute() {
                final Function<? super K, ? extends U> transformer;
                final BiFunction<? super U, ? super U, ? extends U> reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceKeysTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, reducer)).fork();
                    }
                    U r = null;
                    for (Node<K, V> p; (p = advance()) != null; ) {
                        U u;
                        if ((u = transformer.apply(p.key)) != null)
                            r = (r == null) ? u : reducer.apply(r, u);
                    }
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceKeysTask<K, V, U>
                                t = (MapReduceKeysTask<K, V, U>) c,
                                s = t.rights;
                        while (s != null) {
                            U tr, sr;
                            if ((sr = s.result) != null)
                                t.result = (((tr = t.result) == null) ? sr :
                                        reducer.apply(tr, sr));
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceValuesTask<K, V, U>
                extends BulkTask<K, V, U> {
            final Function<? super V, ? extends U> transformer;
            final BiFunction<? super U, ? super U, ? extends U> reducer;
            U result;
            MapReduceValuesTask<K, V, U> rights, nextRight;
    
            MapReduceValuesTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceValuesTask<K, V, U> nextRight,
                     Function<? super V, ? extends U> transformer,
                     BiFunction<? super U, ? super U, ? extends U> reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.reducer = reducer;
            }
    
            public final U getRawResult() {
                return result;
            }
    
            public final void compute() {
                final Function<? super V, ? extends U> transformer;
                final BiFunction<? super U, ? super U, ? extends U> reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceValuesTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, reducer)).fork();
                    }
                    U r = null;
                    for (Node<K, V> p; (p = advance()) != null; ) {
                        U u;
                        if ((u = transformer.apply(p.val)) != null)
                            r = (r == null) ? u : reducer.apply(r, u);
                    }
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceValuesTask<K, V, U>
                                t = (MapReduceValuesTask<K, V, U>) c,
                                s = t.rights;
                        while (s != null) {
                            U tr, sr;
                            if ((sr = s.result) != null)
                                t.result = (((tr = t.result) == null) ? sr :
                                        reducer.apply(tr, sr));
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceEntriesTask<K, V, U>
                extends BulkTask<K, V, U> {
            final Function<Map.Entry<K, V>, ? extends U> transformer;
            final BiFunction<? super U, ? super U, ? extends U> reducer;
            U result;
            MapReduceEntriesTask<K, V, U> rights, nextRight;
    
            MapReduceEntriesTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceEntriesTask<K, V, U> nextRight,
                     Function<Map.Entry<K, V>, ? extends U> transformer,
                     BiFunction<? super U, ? super U, ? extends U> reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.reducer = reducer;
            }
    
            public final U getRawResult() {
                return result;
            }
    
            public final void compute() {
                final Function<Map.Entry<K, V>, ? extends U> transformer;
                final BiFunction<? super U, ? super U, ? extends U> reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceEntriesTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, reducer)).fork();
                    }
                    U r = null;
                    for (Node<K, V> p; (p = advance()) != null; ) {
                        U u;
                        if ((u = transformer.apply(p)) != null)
                            r = (r == null) ? u : reducer.apply(r, u);
                    }
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceEntriesTask<K, V, U>
                                t = (MapReduceEntriesTask<K, V, U>) c,
                                s = t.rights;
                        while (s != null) {
                            U tr, sr;
                            if ((sr = s.result) != null)
                                t.result = (((tr = t.result) == null) ? sr :
                                        reducer.apply(tr, sr));
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceMappingsTask<K, V, U>
                extends BulkTask<K, V, U> {
            final BiFunction<? super K, ? super V, ? extends U> transformer;
            final BiFunction<? super U, ? super U, ? extends U> reducer;
            U result;
            MapReduceMappingsTask<K, V, U> rights, nextRight;
    
            MapReduceMappingsTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceMappingsTask<K, V, U> nextRight,
                     BiFunction<? super K, ? super V, ? extends U> transformer,
                     BiFunction<? super U, ? super U, ? extends U> reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.reducer = reducer;
            }
    
            public final U getRawResult() {
                return result;
            }
    
            public final void compute() {
                final BiFunction<? super K, ? super V, ? extends U> transformer;
                final BiFunction<? super U, ? super U, ? extends U> reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceMappingsTask<K, V, U>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, reducer)).fork();
                    }
                    U r = null;
                    for (Node<K, V> p; (p = advance()) != null; ) {
                        U u;
                        if ((u = transformer.apply(p.key, p.val)) != null)
                            r = (r == null) ? u : reducer.apply(r, u);
                    }
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceMappingsTask<K, V, U>
                                t = (MapReduceMappingsTask<K, V, U>) c,
                                s = t.rights;
                        while (s != null) {
                            U tr, sr;
                            if ((sr = s.result) != null)
                                t.result = (((tr = t.result) == null) ? sr :
                                        reducer.apply(tr, sr));
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceKeysToDoubleTask<K, V>
                extends BulkTask<K, V, Double> {
            final ToDoubleFunction<? super K> transformer;
            final DoubleBinaryOperator reducer;
            final double basis;
            double result;
            MapReduceKeysToDoubleTask<K, V> rights, nextRight;
    
            MapReduceKeysToDoubleTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceKeysToDoubleTask<K, V> nextRight,
                     ToDoubleFunction<? super K> transformer,
                     double basis,
                     DoubleBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Double getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToDoubleFunction<? super K> transformer;
                final DoubleBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    double r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceKeysToDoubleTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceKeysToDoubleTask<K, V>
                                t = (MapReduceKeysToDoubleTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsDouble(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceValuesToDoubleTask<K, V>
                extends BulkTask<K, V, Double> {
            final ToDoubleFunction<? super V> transformer;
            final DoubleBinaryOperator reducer;
            final double basis;
            double result;
            MapReduceValuesToDoubleTask<K, V> rights, nextRight;
    
            MapReduceValuesToDoubleTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceValuesToDoubleTask<K, V> nextRight,
                     ToDoubleFunction<? super V> transformer,
                     double basis,
                     DoubleBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Double getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToDoubleFunction<? super V> transformer;
                final DoubleBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    double r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceValuesToDoubleTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceValuesToDoubleTask<K, V>
                                t = (MapReduceValuesToDoubleTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsDouble(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceEntriesToDoubleTask<K, V>
                extends BulkTask<K, V, Double> {
            final ToDoubleFunction<Map.Entry<K, V>> transformer;
            final DoubleBinaryOperator reducer;
            final double basis;
            double result;
            MapReduceEntriesToDoubleTask<K, V> rights, nextRight;
    
            MapReduceEntriesToDoubleTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceEntriesToDoubleTask<K, V> nextRight,
                     ToDoubleFunction<Map.Entry<K, V>> transformer,
                     double basis,
                     DoubleBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Double getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToDoubleFunction<Map.Entry<K, V>> transformer;
                final DoubleBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    double r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceEntriesToDoubleTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceEntriesToDoubleTask<K, V>
                                t = (MapReduceEntriesToDoubleTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsDouble(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceMappingsToDoubleTask<K, V>
                extends BulkTask<K, V, Double> {
            final ToDoubleBiFunction<? super K, ? super V> transformer;
            final DoubleBinaryOperator reducer;
            final double basis;
            double result;
            MapReduceMappingsToDoubleTask<K, V> rights, nextRight;
    
            MapReduceMappingsToDoubleTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceMappingsToDoubleTask<K, V> nextRight,
                     ToDoubleBiFunction<? super K, ? super V> transformer,
                     double basis,
                     DoubleBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Double getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToDoubleBiFunction<? super K, ? super V> transformer;
                final DoubleBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    double r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceMappingsToDoubleTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceMappingsToDoubleTask<K, V>
                                t = (MapReduceMappingsToDoubleTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsDouble(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceKeysToLongTask<K, V>
                extends BulkTask<K, V, Long> {
            final ToLongFunction<? super K> transformer;
            final LongBinaryOperator reducer;
            final long basis;
            long result;
            MapReduceKeysToLongTask<K, V> rights, nextRight;
    
            MapReduceKeysToLongTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceKeysToLongTask<K, V> nextRight,
                     ToLongFunction<? super K> transformer,
                     long basis,
                     LongBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Long getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToLongFunction<? super K> transformer;
                final LongBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    long r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceKeysToLongTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceKeysToLongTask<K, V>
                                t = (MapReduceKeysToLongTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsLong(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceValuesToLongTask<K, V>
                extends BulkTask<K, V, Long> {
            final ToLongFunction<? super V> transformer;
            final LongBinaryOperator reducer;
            final long basis;
            long result;
            MapReduceValuesToLongTask<K, V> rights, nextRight;
    
            MapReduceValuesToLongTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceValuesToLongTask<K, V> nextRight,
                     ToLongFunction<? super V> transformer,
                     long basis,
                     LongBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Long getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToLongFunction<? super V> transformer;
                final LongBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    long r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceValuesToLongTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceValuesToLongTask<K, V>
                                t = (MapReduceValuesToLongTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsLong(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceEntriesToLongTask<K, V>
                extends BulkTask<K, V, Long> {
            final ToLongFunction<Map.Entry<K, V>> transformer;
            final LongBinaryOperator reducer;
            final long basis;
            long result;
            MapReduceEntriesToLongTask<K, V> rights, nextRight;
    
            MapReduceEntriesToLongTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceEntriesToLongTask<K, V> nextRight,
                     ToLongFunction<Map.Entry<K, V>> transformer,
                     long basis,
                     LongBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Long getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToLongFunction<Map.Entry<K, V>> transformer;
                final LongBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    long r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceEntriesToLongTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsLong(r, transformer.applyAsLong(p));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceEntriesToLongTask<K, V>
                                t = (MapReduceEntriesToLongTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsLong(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceMappingsToLongTask<K, V>
                extends BulkTask<K, V, Long> {
            final ToLongBiFunction<? super K, ? super V> transformer;
            final LongBinaryOperator reducer;
            final long basis;
            long result;
            MapReduceMappingsToLongTask<K, V> rights, nextRight;
    
            MapReduceMappingsToLongTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceMappingsToLongTask<K, V> nextRight,
                     ToLongBiFunction<? super K, ? super V> transformer,
                     long basis,
                     LongBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Long getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToLongBiFunction<? super K, ? super V> transformer;
                final LongBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    long r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceMappingsToLongTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceMappingsToLongTask<K, V>
                                t = (MapReduceMappingsToLongTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsLong(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceKeysToIntTask<K, V>
                extends BulkTask<K, V, Integer> {
            final ToIntFunction<? super K> transformer;
            final IntBinaryOperator reducer;
            final int basis;
            int result;
            MapReduceKeysToIntTask<K, V> rights, nextRight;
    
            MapReduceKeysToIntTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceKeysToIntTask<K, V> nextRight,
                     ToIntFunction<? super K> transformer,
                     int basis,
                     IntBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Integer getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToIntFunction<? super K> transformer;
                final IntBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    int r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceKeysToIntTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceKeysToIntTask<K, V>
                                t = (MapReduceKeysToIntTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsInt(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceValuesToIntTask<K, V>
                extends BulkTask<K, V, Integer> {
            final ToIntFunction<? super V> transformer;
            final IntBinaryOperator reducer;
            final int basis;
            int result;
            MapReduceValuesToIntTask<K, V> rights, nextRight;
    
            MapReduceValuesToIntTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceValuesToIntTask<K, V> nextRight,
                     ToIntFunction<? super V> transformer,
                     int basis,
                     IntBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Integer getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToIntFunction<? super V> transformer;
                final IntBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    int r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceValuesToIntTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceValuesToIntTask<K, V>
                                t = (MapReduceValuesToIntTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsInt(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceEntriesToIntTask<K, V>
                extends BulkTask<K, V, Integer> {
            final ToIntFunction<Map.Entry<K, V>> transformer;
            final IntBinaryOperator reducer;
            final int basis;
            int result;
            MapReduceEntriesToIntTask<K, V> rights, nextRight;
    
            MapReduceEntriesToIntTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceEntriesToIntTask<K, V> nextRight,
                     ToIntFunction<Map.Entry<K, V>> transformer,
                     int basis,
                     IntBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Integer getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToIntFunction<Map.Entry<K, V>> transformer;
                final IntBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    int r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceEntriesToIntTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsInt(r, transformer.applyAsInt(p));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceEntriesToIntTask<K, V>
                                t = (MapReduceEntriesToIntTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsInt(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        @SuppressWarnings("serial")
        static final class MapReduceMappingsToIntTask<K, V>
                extends BulkTask<K, V, Integer> {
            final ToIntBiFunction<? super K, ? super V> transformer;
            final IntBinaryOperator reducer;
            final int basis;
            int result;
            MapReduceMappingsToIntTask<K, V> rights, nextRight;
    
            MapReduceMappingsToIntTask
                    (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                     MapReduceMappingsToIntTask<K, V> nextRight,
                     ToIntBiFunction<? super K, ? super V> transformer,
                     int basis,
                     IntBinaryOperator reducer) {
                super(p, b, i, f, t);
                this.nextRight = nextRight;
                this.transformer = transformer;
                this.basis = basis;
                this.reducer = reducer;
            }
    
            public final Integer getRawResult() {
                return result;
            }
    
            public final void compute() {
                final ToIntBiFunction<? super K, ? super V> transformer;
                final IntBinaryOperator reducer;
                if ((transformer = this.transformer) != null &&
                        (reducer = this.reducer) != null) {
                    int r = this.basis;
                    for (int i = baseIndex, f, h; batch > 0 &&
                            (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                        addToPendingCount(1);
                        (rights = new MapReduceMappingsToIntTask<K, V>
                                (this, batch >>>= 1, baseLimit = h, f, tab,
                                        rights, transformer, r, reducer)).fork();
                    }
                    for (Node<K, V> p; (p = advance()) != null; )
                        r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
                    result = r;
                    CountedCompleter<?> c;
                    for (c = firstComplete(); c != null; c = c.nextComplete()) {
                        @SuppressWarnings("unchecked")
                        MapReduceMappingsToIntTask<K, V>
                                t = (MapReduceMappingsToIntTask<K, V>) c,
                                s = t.rights;
                        while (s != null) {
                            t.result = reducer.applyAsInt(t.result, s.result);
                            s = t.rights = s.nextRight;
                        }
                    }
                }
            }
        }
    
        // Unsafe mechanics
        private static final sun.misc.Unsafe U;
        private static final long SIZECTL;
        private static final long TRANSFERINDEX;
        private static final long BASECOUNT;
        private static final long CELLSBUSY;
        private static final long CELLVALUE;
        private static final long ABASE;
        private static final int ASHIFT;
    
        static {
            try {
                U = sun.misc.Unsafe.getUnsafe();
                Class<?> k = ConcurrentHashMap.class;
                SIZECTL = U.objectFieldOffset
                        (k.getDeclaredField("sizeCtl"));
                TRANSFERINDEX = U.objectFieldOffset
                        (k.getDeclaredField("transferIndex"));
                BASECOUNT = U.objectFieldOffset
                        (k.getDeclaredField("baseCount"));
                CELLSBUSY = U.objectFieldOffset
                        (k.getDeclaredField("cellsBusy"));
                Class<?> ck = CounterCell.class;
                CELLVALUE = U.objectFieldOffset
                        (ck.getDeclaredField("value"));
                Class<?> ak = Node[].class;
                ABASE = U.arrayBaseOffset(ak);
                int scale = U.arrayIndexScale(ak);
                if ((scale & (scale - 1)) != 0)
                    throw new Error("data type scale not a power of two");
                ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }
    
    
  • 相关阅读:
    《精通C#》委托与事件(10章)
    正则
    h5的formData 上传文件及.net后台
    img显示文件对象
    用div 画出三角形
    父元素有border-radius时,overflow 失效
    HTML标签文本内容正常显示而不被解析
    css 从简单到复杂的动态效果,你值得拥有
    在$.post()函数外 使用$.post()返回函数的数据
    jquery工作积累
  • 原文地址:https://www.cnblogs.com/wupeixuan/p/8624781.html
Copyright © 2020-2023  润新知