• pandas.DataFrame.where和mask 解读


    1.前言背景

    没怎么用过df.where 都是直接使用loc、apply等方法去解决。

     

    可能是某些功能还没有超出loc和apply的适用范围。

    2.进入df.where和df.mask

    DataFrame.where(self, cond, other=nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False)

    note:Replace values in DataFrame with other  where the cond is False.

    我们还是要看一下官网对里面每一个参数的解释:

     红色是特别注意的,往往无论是博客还是案例一般给不会穷举所有可能,只有把api的每一种可能理解了,才能无招胜有招。

    大体意思:就是对一个DataFrame进行条件判断当他的条件不符合就选择other参数里面的数值。

    其实它拥有一个相反的函数where<==>mask:where条件不符合进行替换,mask是条件符合进行替换。

    DataFrame.mask(self, cond, other=nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False)

    note:Replace values in DataFrame with other  where the cond is True.

    我们还是要看一下官网对里面每一个参数的解释:

     也可以看到两者参数并无差异。

    3.与np.where的异同?

    np.where(condition, [x, y]),这里三个参数,其中必写参数是condition(判断条件),后边的x和y是可选参数.那么这三个参数都有怎样的要求呢?

    condition:array_like,bool ,当为True时,产生x,否则产生y

    简单说,对第一个参数的要求是这样的,首先是数据类型的要求,类似于数组或者布尔值,当判断条件为真时返回x中的值,否则返回y中的值

    x,y:array_like,可选,要从中选择的值。 x,y和condition需要可广播到某种形状

    x和y是可选参数,并且对这两个参数的数据类型要求只有类似数组这一条,当条件判断为true或者false时从这两个类似数组的容器中取数.

    4.实际案例

    4.1mask和where 的区别,np.where(cond,df1,df2)

    s = pd.Series(range(5))

    s.mask(s  > 0)

    s.where(s > 0)

    ss = pd.Series(range(10,20,2))
    import numpy as np
    np.where(s>2,s,ss)

    4.2探究cond boolean Series/DataFrame, array-like, or callable和other scalar, Series/DataFrame, or callable

     下面我在cond使用callable类型,在other参数中使用callable参数

    df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
    df

    def cond1(x):
         return x%3==0
    def mult3(x):
        return x*3
    df.where(cond1, mult3) 

  • 相关阅读:
    https://www.unavco.org/projects/projectsupport/boreholeservices/bsmliterature/bsmliterature.html
    SpringBoot+log4j2+MDC+AOP记录requestId
    CVE_2020_0796 SMBGhost浅析
    CVE20201301 SMBLost漏洞浅析
    Alpine容器安装运行ssh
    cut用法详细解析
    #、##、__VA_ARGS__的使用
    电子地图监控
    mybatisgeneratorgui selectkey
    Native.loadLibrary
  • 原文地址:https://www.cnblogs.com/wqbin/p/11777292.html
Copyright © 2020-2023  润新知