Problem Description
An abandoned country has n(n≤100000) villages
which are numbered from 1 to n .
Since abandoned for a long time, the roads need to be re-built. There are m(m≤1000000) roads
to be re-built, the length of each road is wi(wi≤1000000) .
Guaranteed that any two wi are
different. The roads made all the villages connected directly or indirectly before destroyed. Every road will cost the same value of its length to rebuild. The king wants to use the minimum cost to make all the villages connected with each other directly or
indirectly. After the roads are re-built, the king asks a men as messenger. The king will select any two different points as starting point or the destination with the same probability. Now the king asks you to tell him the minimum cost and the minimum expectations
length the messenger will walk.
Input
The first line contains an integer T(T≤10) which
indicates the number of test cases.
For each test case, the first line contains two integersn,m indicate
the number of villages and the number of roads to be re-built. Next m lines,
each line have three number i,j,wi ,
the length of a road connecting the village i and
the village j is wi .
For each test case, the first line contains two integers
Output
output the minimum cost and minimum Expectations with two decimal places. They separated by a space.
Sample Input
1 4 6 1 2 1 2 3 2 3 4 3 4 1 4 1 3 5 2 4 6
Sample Output
6 3.33
Author
HIT
Source
题目大意:
有n个点,有m条边,让你求它的最小生成树,并且在这个生成树上,求任意两点间的距离的期望。
解题思路:
第一问比较裸,就直接求最小生成树就好,第二问需要一些技巧。
现在有一条边ab,其中b的子树个数为num,那么这条边被经过的次数为(n - num) * num
然后乘一下这条边的权值就可以了
代码:
#include <cstdio> #include <vector> #include <cstring> #include <algorithm> using namespace std; const int maxn = 1e5 + 5; typedef long long LL; typedef struct node{ int from, to; int w; bool operator < (node zz){ return w < zz.w; } }Edge; typedef struct nn{ int to; int w; nn(){} nn(LL a, LL b){ to = a; w = b; } }EEE; LL ans; double res; int t, n, m; Edge g[maxn * 10]; vector<EEE> e[maxn]; int vis[maxn], pre[maxn]; int findfather(int x){ return pre[x] = (pre[x] == x ? x : findfather(pre[x])); } void join(int x, int y){ pre[findfather(x)] = findfather(y); } void kruskal(){ int x, y, flag = 0; for(int i = 0; i < m; ++i){ x = findfather(g[i].from); y = findfather(g[i].to); if(x == y) continue; join(x, y); ++flag; ans += g[i].w; e[g[i].from].push_back(nn(g[i].to, g[i].w)); e[g[i].to].push_back(nn(g[i].from, g[i].w)); if(flag == n - 1) return; } } int dfs(int p){ if(vis[p]) return 0; vis[p] = 1; int tt = 1, num; for(int i = 0; i < e[p].size(); ++i){ int v = e[p][i].to; num = dfs(v); tt += num; res += (LL)(n - num) * (LL)num * (LL)e[p][i].w; } return tt; } int main(){ scanf("%d", &t); while(t--){ scanf("%d%d", &n, &m); for(int i = 1; i <= n; ++i) { pre[i] = i; vis[i] = 0; e[i].clear(); } for(int i = 0; i < m; ++i){ scanf("%d%d%d", &g[i].from, &g[i].to, &g[i].w); } sort(g, g + m); ans = 0; kruskal(); res = 0; dfs(1); printf("%lld %.2lf ", ans, res / ((n - 1LL) * n / 2.0)); } return 0; }