数字计数
解题思路
用(dp[i][j][k])来表示长度为(i)且以(j)为开头的数里(k)出现的次数。
则转移方程式为:(dp[i][j][k] += sum_{t=0}^{9} dp[i - 1][t][k]),即在每个数前面放一个(j),但是对于放在前面的这个(j)我们还没有计算进去,所以有:(dp[i][j][j] += 10^{i-1})。注意此时计算的是有前导0的。
接下来见代码(其实是不知道怎么描述)。
代码如下
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
inline ll fpow(ll x, ll p){
ll ans = 1;
for(; p; p >>= 1, x = 1LL * x * x)if(p & 1)ans = 1LL * x * ans;
return ans;
}
ll dp[20][15][15];
void work(ll x, ll ans[])
{
ll num[15];
ll t = x;
int cnt = 0;
while(t){ //把每一位拆出来
num[++cnt] = t % 10;
t /= 10;
}
for(int i = 1; i < cnt; i ++) //小于cnt的位数全加上
for(int j = 1; j <= 9; j ++)
for(int k = 0; k <= 9; k ++)
ans[k] += dp[i][j][k];
for(int j = 1; j < num[cnt]; j ++) //相同位数小于最高位的全加上
for(int k = 0; k <= 9; k ++)
ans[k] += dp[cnt][j][k];
for(int i = cnt - 1; i >= 1; i --){ //遍历每一位
for(int j = 0; j < num[i]; j ++) //小于这位上数字的全加上
for(int k = 0; k <= 9; k ++)
ans[k] += dp[i][j][k];
for(int u = cnt; u > i; u --) //前面这几位都相等,出现了相同的次数
ans[num[u]] += num[i] * fpow(10LL, i - 1);
}
}
int main()
{
ll a, b;
scanf("%lld%lld", &a, &b);
for(int i = 1; i <= 12; i ++){
for(int j = 0; j <= 9; j ++){
for(int k = 0; k <= 9; k ++)
for(int t = 0; t <= 9; t ++)
dp[i][j][k] += dp[i - 1][t][k];
dp[i][j][j] += fpow(10LL, i - 1);
}
}
ll ans1[15] = {0};
ll ans2[15] = {0};
work(b + 1, ans1);
work(a, ans2);
for(int i = 0; i <= 9; i ++)
printf("%lld ", ans1[i] - ans2[i]);
return 0;
}